ترغب بنشر مسار تعليمي؟ اضغط هنا

We present GIGANTES, the most extensive and realistic void catalog suite ever released -- containing over 1 billion cosmic voids covering a volume larger than the observable Universe, more than 20 TB of data, and created by running the void finder VI DE on QUIJOTEs halo simulations. The expansive and detailed GIGANTES suite, spanning thousands of cosmological models, opens up the study of voids, answering compelling questions: Do voids carry unique cosmological information? How is this information correlated with galaxy information? Leveraging the large number of voids in the GIGANTES suite, our Fisher constraints demonstrate voids contain additional information, critically tightening constraints on cosmological parameters. We use traditional void summary statistics (void size function, void density profile) and the void auto-correlation function, which independently yields an error of $0.13,mathrm{eV}$ on $sum,m_{ u}$ for a 1 $h^{-3}mathrm{Gpc}^3$ simulation, without CMB priors. Combining halos and voids we forecast an error of $0.09,mathrm{eV}$ from the same volume. Extrapolating to next generation multi-Gpc$^3$ surveys such as DESI, Euclid, SPHEREx, and the Roman Space Telescope, we expect voids should yield an independent determination of neutrino mass. Crucially, GIGANTES is the first void catalog suite expressly built for intensive machine learning exploration. We illustrate this by training a neural network to perform likelihood-free inference on the void size function. Cosmology problems provide an impetus to develop novel deep learning techniques, leveraging the symmetries embedded throughout the universe from physical laws, interpreting models, and accurately predicting errors. With GIGANTES, machine learning gains an impressive dataset, offering unique problems that will stimulate new techniques.
Of the many proposed extensions to the $Lambda$CDM paradigm, a model in which neutrinos self-interact until close to the epoch of matter-radiation equality has been shown to provide a good fit to current cosmic microwave background (CMB) data, while at the same time alleviating tensions with late-time measurements of the expansion rate and matter fluctuation amplitude. Interestingly, CMB fits to this model either pick out a specific large value of the neutrino interaction strength, or are consistent with the extremely weak neutrino interaction found in $Lambda$CDM, resulting in a bimodal posterior distribution for the neutrino self-interaction cross section. In this paper, we explore why current cosmological data select this particular large neutrino self-interaction strength, and by consequence, disfavor intermediate values of the self-interaction cross section. We show how it is the $ell gtrsim 1000$ CMB temperature anisotropies, most recently measured by the Planck satellite, that produce this bimodality. We also establish that smaller scale temperature data, and improved polarization data measuring the temperature-polarization cross-correlation, will best constrain the neutrino self-interaction strength. We forecast that the upcoming Simons Observatory should be capable of distinguishing between the models.
New physics in the neutrino sector might be necessary to address anomalies between different neutrino oscillation experiments. Intriguingly, it also offers a possible solution to the discrepant cosmological measurements of $H_0$ and $sigma_8$. We sho w here that delaying the onset of neutrino free-streaming until close to the epoch of matter-radiation equality can naturally accommodate a larger value for the Hubble constant $H_0=72.3 pm 1.4$ km/s/Mpc and a lower value of the matter fluctuations $sigma_8=0.786pm 0.020$, while not degrading the fit to the cosmic microwave background (CMB) damping tail. We achieve this by introducing neutrino self-interactions in the presence of a non-vanishing sum of neutrino masses. This strongly interacting neutrino cosmology prefers $N_{rm eff} = 4.02 pm 0.29$, which has interesting implications for particle model-building and neutrino oscillation anomalies. We show that the absence of the neutrino free-streaming phase shift on the CMB can be compensated by shifting the value of other cosmological parameters, hence providing an important caveat to the detections made in the literature. Due to their impact on the evolution of the gravitational potential at early times, self-interacting neutrinos and their subsequent decoupling leave a rich structure on the matter power spectrum. In particular, we point out the existence of a novel localized feature appearing on scales entering the horizon at the onset of neutrino free-streaming. While the interacting neutrino cosmology provides a better global fit to current cosmological data, we find that traditional Bayesian analyses penalize the model as compared to the standard cosmological. Our analysis shows that it is possible to find radically different cosmological models that nonetheless provide excellent fits to the data, hence providing an impetus to thoroughly explore alternate cosmological scenarios.
Do void statistics contain information beyond the tracer 2-point correlation function? Yes! As we vary the sum of the neutrino masses, we find void statistics contain information absent when using just tracer 2-point statistics. Massive neutrinos uni quely affect cosmic voids. We explore their impact on void clustering using both the DEMNUni and MassiveNuS simulations. For voids, neutrino effects depend on the observed void tracers. As the neutrino mass increases, the number of small voids traced by cold dark matter particles increases and the number of large voids decreases. Surprisingly, when massive, highly biased, halos are used as tracers, we find the opposite effect. The scale at which voids cluster, as well as the void correlation, is similarly sensitive to the sum of neutrino masses and the tracers. This scale dependent trend is not due to simulation volume or halo density. The interplay of these signatures in the void abundance and clustering leaves a distinct fingerprint that could be detected with observations and potentially help break degeneracies between different cosmological parameters. This paper paves the way to exploit cosmic voids in future surveys to constrain the mass of neutrinos.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا