ترغب بنشر مسار تعليمي؟ اضغط هنا

75 - Romain Peretti 2014
We analyse inhibition of emission in a 2.5D photonic structures made up a photonic crystal (PhC) and Bragg mirrors using FDTD simulations. A comparison is made between an isolated PhC membrane and the same PhC suspended onto a Bragg mirror or sandwic hed between 2 Bragg mirrors. Strong inhibition of the Purcell factor is observed in a broad spectral range, whatever the in-plane orientation and location of the emitting dipole. We analysed these results numerically and theoretically by simulating the experimentally observed lifetime of a collection of randomly distributed emitters, showing that their average emission rate is decreased by more than one decade, both for coupled or isolated emitters.
In this paper, we propose a method for tailoring the absorption in a photonic crystal membrane. For that purpose, we first applied Time Domain Coupled Mode Theory to such a subwavelength membrane and demonstrated that 100% resonant absorption can be reached even for a symmetric membrane, if degenerate modes are involved. Design rules were then derived from this model in order to tune the absorption. Subsequently, Finite Difference Time Domain simulations were used as a proof of concept and carried out on a low absorbing material (extinction coefficient=10-2) with a high refractive index corresponding to the optical indices of amorphous silicon at around 720 nm. In doing so, 85% resonant absorption was obtained, which is significantly higher than the commonly reported 50% maximum value. Those results were finally analyzed and confronted to theory so as to extend our method to other materials, configurations and applications.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا