ترغب بنشر مسار تعليمي؟ اضغط هنا

Motivated by the ongoing controversy on the origin of the nonlinear index saturation and subsequent intensity clamping in femtosecond filaments, we study the atomic nonlinear polarization induced by a high-intensity and ultrashort laser pulse in hydr ogen by numerically solving the time dependent Schrodinger equation. Special emphasis is given to the efficient modeling of the nonlinear polarization at central laser frequency corresponding to 800 nm wavelength. Here, the recently proposed model of the Higher-Order Kerr Effect (HOKE) and t
Forward and backward THz emission by ionizing two-color laser pulses in gas is investigated by means of a simple semi-analytical model based on Jefimenkos equation and rigorous Maxwell simulations in one and two dimensions. We find the emission in ba ckward direction having a much smaller spectral bandwidth than in forward direction and explain this by interference effects. Forward THz radiation is generated predominantly at the ionization front and thus almost not affected by the opacity of the plasma, in excellent agreement with results obtained from a unidirectional pulse propagation model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا