ترغب بنشر مسار تعليمي؟ اضغط هنا

Many atmospheric and climatic criteria have to be taken into account for the selection of a suitable site for the next generation of imaging air-shower Cherenkov telescopes, the Cherenkov Telescope Array CTA. Such data are not available with sufficie nt precision, thus a comparison of the proposed sites and final decision based on a comprehensive characterization is impossible. Identical cross-calibrated instruments have been developed which allow for precise comparison between sites, the cross-validation of existing data, and the ground-validation of satellite data. The site characterization work package of the CTA consortium opted to construct and deploy 9 copies of an autonomous multi-purpose weather sensor, incorporating an infrared cloud sensor, a newly developed sensor for measuring the light of the night sky, and an All-Sky-Camera, the whole referred to as Autonomous Tool for Measuring Observatory Site COnditions PrEcisely (ATMOSCOPE). We present here the hardware that was combined into the ATMOSCOPE and characterize its performance.
A new method for analyzing the returns of the custom-made micro-LIDAR system, which is operated along with the two MAGIC telescopes, allows to apply atmospheric corrections in the MAGIC data analysis chain. Such corrections make it possible to extend the effective observation time of MAGIC under adverse atmospheric conditions and reduce the systematic errors of energy and flux in the data analysis. LIDAR provides a range-resolved atmospheric backscatter profile from which the extinction of Cherenkov light from air shower events can be estimated. Knowledge of the extinction can allow to reconstruct the true image parameters, including energy and flux. Our final goal is to recover the source-intrinsic energy spectrum also for data affected by atmospheric extinction from aerosol layers, such as clouds.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا