ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper presents an algorithm for estimating the weight of a maximum weighted matching by augmenting any estimation routine for the size of an unweighted matching. The algorithm is implementable in any streaming model including dynamic graph strea ms. We also give the first constant estimation for the maximum matching size in a dynamic graph stream for planar graphs (or any graph with bounded arboricity) using $tilde{O}(n^{4/5})$ space which also extends to weighted matching. Using previous results by Kapralov, Khanna, and Sudan (2014) we obtain a $mathrm{polylog}(n)$ approximation for general graphs using $mathrm{polylog}(n)$ space in random order streams, respectively. In addition, we give a space lower bound of $Omega(n^{1-varepsilon})$ for any randomized algorithm estimating the size of a maximum matching up to a $1+O(varepsilon)$ factor for adversarial streams.
We give a new construction for a small space summary satisfying the coreset guarantee of a data set with respect to the $k$-means objective function. The number of points required in an offline construction is in $tilde{O}(k epsilon^{-2}min(d,kepsilo n^{-2}))$ which is minimal among all available constructions. Aside from two constructions with exponential dependence on the dimension, all known coresets are maintained in data streams via the merge and reduce framework, which incurs are large space dependency on $log n$. Instead, our construction crucially relies on Johnson-Lindenstrauss type embeddings which combined with results from online algorithms give us a new technique for efficiently maintaining coresets in data streams without relying on merge and reduce. The final number of points stored by our algorithm in a data stream is in $tilde{O}(k^2 epsilon^{-2} log^2 n min(d,kepsilon^{-2}))$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا