ترغب بنشر مسار تعليمي؟ اضغط هنا

Several machine learning applications involve the optimization of higher-order derivatives (e.g., gradients of gradients) during training, which can be expensive in respect to memory and computation even with automatic differentiation. As a typical e xample in generative modeling, score matching (SM) involves the optimization of the trace of a Hessian. To improve computing efficiency, we rewrite the SM objective and its variants in terms of directional derivatives, and present a generic strategy to efficiently approximate any-order directional derivative with finite difference (FD). Our approximation only involves function evaluations, which can be executed in parallel, and no gradient computations. Thus, it reduces the total computational cost while also improving numerical stability. We provide two instantiations by reformulating variants of SM objectives into the FD forms. Empirically, we demonstrate that our methods produce results comparable to the gradient-based counterparts while being much more computationally efficient.
We propose a unified game-theoretical framework to perform classification and conditional image generation given limited supervision. It is formulated as a three-player minimax game consisting of a generator, a classifier and a discriminator, and the refore is referred to as Triple Generative Adversarial Network (Triple-GAN). The generator and the classifier characterize the conditional distributions between images and labels to perform conditional generation and classification, respectively. The discriminator solely focuses on identifying fake image-label pairs. Under a nonparametric assumption, we prove the unique equilibrium of the game is that the distributions characterized by the generator and the classifier converge to the data distribution. As a byproduct of the three-player mechanism, Triple-GAN is flexible to incorporate different semi-supervised classifiers and GAN architectures. We evaluate Triple-GAN in two challenging settings, namely, semi-supervised learning and the extreme low data regime. In both settings, Triple-GAN can achieve excellent classification results and generate meaningful samples in a specific class simultaneously. In particular, using a commonly adopted 13-layer CNN classifier, Triple-GAN outperforms extensive semi-supervised learning methods substantially on more than 10 benchmarks no matter data augmentation is applied or not.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا