ترغب بنشر مسار تعليمي؟ اضغط هنا

We demonstrate the effects of embedding subgraphs using a Boolean network, which is one of the discrete dynamical models for transcriptional regulatory networks. After comparing the dynamical properties of network embedded seven different subgraphs i ncluding feedback and feedforward subgraphs, we found that complexity of the state space that increases with longer length of attractors and greater number of attractors is reduced for networks with more feedforward subgraphs. In addition, feedforward subgraphs can also provide higher mutual information with lower entropy in a temporal program of gene expression. Networks with other six subgraphs show opposite effects on dynamics of the networks, is roughly consistent with Thomass conjecture. These results suggest that feedforward subgraphs are one of the favorable local structures in biological complex networks.
We demonstrate the advantages of feedforward loops using a Boolean network, which is one of the discrete dynamical models for transcriptional regulatory networks. After comparing the dynamical behaviors of network embedded feedback and feedforward lo ops, we found that feedforward loops can provide higher temporal order (coherence) with lower entropy (randomness) in a temporal program of gene expression. In addition, complexity of the state space that increases with longer length of attractors and greater number of attractors is also reduced for networks with more feedforward loops. Feedback loops show opposite effects on dynamics of the networks. These results suggest that feedforward loops are one of the favorable local structures in biomolecular and neuronal networks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا