ترغب بنشر مسار تعليمي؟ اضغط هنا

A Kramers-Kronig receiver with a continuous wave tone added digitally at the transmitter is combined with a digital resolution enhancer to limit the increase in transmitter quantization noise. Performance increase is demonstrated, as well as the abil ity to reduce the number of bits in the digital-to-analog converter.
Achievable information rates are used as a metric to design novel modulation formats via geometric shaping. The proposed geometrically shaped 256-ary constellation achieves SNR gains of up to 1.18 dB.
Coded modulation is a key technique to increase the spectral efficiency of coherent optical communication systems. Two popular strategies for coded modulation are turbo trellis-coded modulation (TTCM) and bit-interleaved coded modulation (BICM) based on low-density parity-check (LDPC) codes. Although BICM LDPC is suboptimal, its simplicity makes it very popular in practice. In this work, we compare the performance of TTCM and BICM LDPC using information-theoretic measures. Our information-theoretic results show that for the same overhead and modulation format only a very small penalty (less than 0.1 dB) is to be expected when an ideal BICM LDPC scheme is used. However, the results obtained for the coded modulation schemes implemented in this paper show that the TTCM outperforms BICM LDPC by a larger margin. For a 1000 km transmission at 100 Gbit/s, the observed gain was 0.4 dB.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا