ترغب بنشر مسار تعليمي؟ اضغط هنا

Different from conventional electroactive polymers, here we firstly present a new facile actuator made from aluminum alloy. The high-frequency electrically induced flapping motion was characterized under varied physical factors. This electroactuation results from alternative processes of charge induction and discharge, which is confirmed by the existence of periodical pulse current in the circuit. The metal actuator is of great stability and can maintain several days if not for any structural fatigue. Easy fabrication, high tunable frequency and durability make it potential for implementation of actuators for sensors, microelectromechanical systems and robotics.
We firstly demonstrate physically-prepared compliant PVA hydrogel electrodes as a promising supplement in dielectric elastomer actuators. They are capable of conducting high voltages over 5 kV without electrolysis by an electrical double layer effect . The hydrogel electrodes adhere tightly to the dielectric layer, which ensures its structural stability during actuation. All-polymeric actuators fabricated by these electrodes exhibited excellent consecutive working performance over 2960 cycles. The actuation was influenced by applied voltage, ramp rate, electrode elastic modulus and moisture content. A maximum areal strain over 78% was achieved. Tunable transparency, good biocompatibility, long lifetime, low cost and facile fabrication make PVA hydrogel electrode another promising candidate in the fields of sensors, artificial muscles and optical applications.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا