ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, we investigate the problem of decentralized federated learning (DFL) in Internet of things (IoT) systems, where a number of IoT clients train models collectively for a common task without sharing their private training data in the abse nce of a central server. Most of the existing DFL schemes are composed of two alternating steps, i.e., model updating and model averaging. However, averaging model parameters directly to fuse different models at the local clients suffers from client-drift especially when the training data are heterogeneous across different clients. This leads to slow convergence and degraded learning performance. As a possible solution, we propose the decentralized federated earning via mutual knowledge transfer (Def-KT) algorithm where local clients fuse models by transferring their learnt knowledge to each other. Our experiments on the MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets reveal that the proposed Def-KT algorithm significantly outperforms the baseline DFL methods with model averaging, i.e., Combo and FullAvg, especially when the training data are not independent and identically distributed (non-IID) across different clients.
In this letter, we consider the detection of sparse stochastic signals with sensor networks (SNs), where the fusion center (FC) collects 1-bit data from the local sensors and then performs global detection. For this problem, a newly developed 1-bit l ocally most powerful test (LMPT) detector requires 3.3Q sensors to asymptotically achieve the same detection performance as the centralized LMPT (cLMPT) detector with Q sensors. This 1-bit LMPT detector is based on 1-bit quantized observations without any additional processing at the local sensors. However, direct quantization of observations is not the most efficient processing strategy at the sensors since it incurs unnecessary information loss. In this letter, we propose an improved-1-bit LMPT (Im-1-bit LMPT) detector that fuses local 1-bit quantized likelihood ratios (LRs) instead of directly quantized local observations. In addition, we design the quantization thresholds at the local sensors to ensure asymptotically optimal detection performance of the proposed detector. It is shown theoretically and numerically that, with the designed quantization thresholds, the proposed Im-1-bit LMPT detector for the detection of sparse signals requires less number of sensor nodes to compensate for the performance loss caused by 1-bit quantization.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا