ترغب بنشر مسار تعليمي؟ اضغط هنا

Functional binary datasets occur frequently in real practice, whereas discrete characteristics of the data can bring challenges to model estimation. In this paper, we propose a sparse logistic functional principal component analysis (SLFPCA) method t o handle the functional binary data. The SLFPCA looks for local sparsity of the eigenfunctions to obtain convenience in interpretation. We formulate the problem through a penalized Bernoulli likelihood with both roughness penalty and sparseness penalty terms. An efficient algorithm is developed for the optimization of the penalized likelihood using majorization-minimization (MM) algorithm. The theoretical results indicate both consistency and sparsistency of the proposed method. We conduct a thorough numerical experiment to demonstrate the advantages of the SLFPCA approach. Our method is further applied to a physical activity dataset.
Growth-induced pattern formations in curved film-substrate structures have attracted extensive attentions recently. In most existing literature, the growth tensor is assumed to be homogeneous or piecewise homogeneous. In this paper, we aim at clarify ing the influence of a growth gradient on pattern formation and pattern evolution in bilayered tubular tissues under plane-strain deformation. In the framework of finite elasticity, a bifurcation condition is derived for a general material model and a generic growth function. Then we suppose that both layers are composed of neo-Hookean materials. In particular, the growth function is assumed to decay linearly from the inner surface or from the outer surface. It is found that a gradient in the growth has a weak effect on the critical state, compared to the homogeneous growth type where both layers share the same growth factor. Furthermore, a finite element model is built to validate the theoretical model and to investigate the post-buckling behaviors. It is found that the associated pattern transition is not controlled by the growth gradient but by the ratio of the shear modulus between two layers. Different morphologies can occur when the modulus ratio is varied. The current analysis could provide useful insight into the influence of a growth gradient on surface instabilities and suggests that a homogeneous growth field may provide a good approximation on interpreting complicated morphological formations in multiple systems.
249 - Lei Hou , Xue Pan , Kecheng Liu 2021
Social media and online navigation bring us enjoyable experience in accessing information, and simultaneously create information cocoons (ICs) in which we are unconsciously trapped with limited and biased information. We provide a formal definition o f IC in the scenario of online navigation. Subsequently, by analyzing real recommendation networks extracted from Science, PNAS and Amazon websites, and testing mainstream algorithms in disparate recommender systems, we demonstrate that similarity-based recommendation techniques result in ICs, which suppress the system navigability by hundreds of times. We further propose a flexible recommendation strategy that solves the IC-induced problem and improves retrieval accuracy in navigation, demonstrated by simulations on real data and online experiments on the largest video website in China.
Channel pruning is one of the major compression approaches for deep neural networks. While previous pruning methods have mostly focused on identifying unimportant channels, channel pruning is considered as a special case of neural architecture search in recent years. However, existing methods are either complicated or prone to sub-optimal pruning. In this paper, we propose a pruning framework that adaptively determines the number of each layers channels as well as the wights inheritance criteria for sub-network. Firstly, evaluate the importance of each block in the network based on the mean of the scaling parameters of the BN layers. Secondly, use the bisection method to quickly find the compact sub-network satisfying the budget. Finally, adaptively and efficiently choose the weight inheritance criterion that fits the current architecture and fine-tune the pruned network to recover performance. AdaPruner allows to obtain pruned network quickly, accurately and efficiently, taking into account both the structure and initialization weights. We prune the currently popular CNN models (VGG, ResNet, MobileNetV2) on different image classification datasets, and the experimental results demonstrate the effectiveness of our proposed method. On ImageNet, we reduce 32.8% FLOPs of MobileNetV2 with only 0.62% decrease for top-1 accuracy, which exceeds all previous state-of-the-art channel pruning methods. The code will be released.
The 3D printing technology for cementitious materials (3DPC) has been developed rapidly, which brought significant technological advancements for building and construction industry. However, surface finish problem and weaking bonding interface restri cts the development and application of 3DPC technology. This work aims at solving above-mentioned problem using a specially designed shaping plate apparatus. X-CT technology is introduced to analyze the microstructure, while the single-phase computational fluid dynamics (CFD) simulation is used for characterizing the filling of extrudate in the shaping plate apparatus and stress and pressure distribution in printed structures. Results indicate that using the shaping plate apparatus may slightly reduce the printing speed, but it can effectively constrain the free expansion of the extrudate, control its cross-sectional geometry, improve the surface finish quality and mechanical properties of printed structures. This study provides a theoretical basis and technical guidance for the design and application of shaping plate apparatus.
Perceptrons, which perform binary classification, are the fundamental building blocks of neural networks. Given a data set of size~$N$ and margin~$gamma$ (how well the given data are separated), the query complexity of the best-known quantum training algorithm scales as either $( icefrac{sqrt{N}}{gamma^2})log( icefrac1{gamma^2)}$ or $ icefrac{N}{sqrt{gamma}}$, which is achieved by a hybrid of classical and quantum search. In this paper, we improve the version space quantum training method for perceptrons such that the query complexity of our algorithm scales as $sqrt{ icefrac{N}{gamma}}$. This is achieved by constructing an oracle for the perceptrons using quantum counting of the number of data elements that are correctly classified. We show that query complexity to construct such an oracle has a quadratic improvement over classical methods. Once such an oracle is constructed, bounded-error quantum search can be used to search over the hyperplane instances. The optimality of our algorithm is proven by reducing the evaluation of a two-level AND-OR tree (for which the query complexity lower bound is known) to a multi-criterion search. Our quantum training algorithm can be generalized to train more complex machine learning models such as neural networks, which are built on a large number of perceptrons.
Legged robots are becoming increasingly powerful and popular in recent years for their potential to bring the mobility of autonomous agents to the next level. This work presents a deep reinforcement learning approach that learns a robust Lidar-based perceptual locomotion policy in a partially observable environment using Proximal Policy Optimisation. Visual perception is critical to actively overcome challenging terrains, and to do so, we propose a novel learning strategy: Dynamic Reward Strategy (DRS), which serves as effective heuristics to learn a versatile gait using a neural network architecture without the need to access the history data. Moreover, in a modified version of the OpenAI gym environment, the proposed work is evaluated with scores over 90% success rate in all tested challenging terrains.
Topological band insulators and (semi-) metals can arise out of atomic insulators when the hopping strength between electrons increases. Such topological phases are separated from the atomic insulator by a bulk gap closing. In this work, we show that in many (magnetic) space groups, the crystals with certain Wyckoff positions and orbitals being occupied must be semimetal or metals in the atomic limit, e.g. the hopping strength between electrons is infinite weak but not vanishing, which then are termed atomic (semi-)metals (ASMs). We derive a sufficient condition for realizing ASMs in spinless and spinful systems. Remarkably, we find that increasing the hopping strength between electrons may transform an ASM into an insulator with both symmetries and electron fillings of crystal are preserved. The induced insulators inevitably are topologically non-trivial and at least are obstructed atomic insulators (OAIs) that are labeled as trivial insulator in topological quantum chemistry website. Particularly, using silicon as an example, we show ASM criterion can discover the OAIs missed by the recently proposed criterion of filling enforced OAI. Our work not only establishes an efficient way to identify and design non-trivial insulators but also predicts that the group-IV elemental semiconductors are ideal candidate materials for OAI.
Diverse machine translation aims at generating various target language translations for a given source language sentence. Leveraging the linear relationship in the sentence latent space introduced by the mixup training, we propose a novel method, Mix Diversity, to generate different translations for the input sentence by linearly interpolating it with different sentence pairs sampled from the training corpus when decoding. To further improve the faithfulness and diversity of the translations, we propose two simple but effective approaches to select diverse sentence pairs in the training corpus and adjust the interpolation weight for each pair correspondingly. Moreover, by controlling the interpolation weight, our method can achieve the trade-off between faithfulness and diversity without any additional training, which is required in most of the previous methods. Experiments on WMT16 en-ro, WMT14 en-de, and WMT17 zh-en are conducted to show that our method substantially outperforms all previous diverse machine translation methods.
POLAR is a dedicated Gamma-Ray Burst polarimeter making use of Compton-scattering which took data from the second Chinese spacelab, the Tiangong-2 from September 2016 to April 2017. It has a wide Field of View of $sim6$ steradians and an effective ar ea of $sim400 cm^2$ at 300 keV. These features make it one of the most sensitive instruments in its energy range (15-500 keV), and therefore capable of almost continuously monitoring persistent sources such as pulsars. Significant folded pulsation from both PSR B0531+21 (the Crab Pulsar) and PSR B1509-58 has been observed. Observations of the Crab Pulsar with POLAR have previously been used for phase-resolved spectroscopy of the Crab Pulsar to calibrate the instrumental responses of POLAR. In this work, we investigate a polarimetric joint-fitting method for observations of the Crab Pulsar with POLAR. Unlike a GRB observation with POLAR, the observations of the Crab Pulsar are complicated by multiple observational datasets during which the polarization plane rotates as well. So before fitting, we have to correct the modulation curves under different datasets, by taking into account the rotations of the Crab Pulsars relative position in the detctors local coordinate, and the changes of detector response in different datasets. Despite these difficulties and the low signal to background for such sources constraining, polarization measurements were possible with the POLAR data. We will present the methodology briefly, which could be applied to any wide FoV polarimeter, and polarization results of the Crab pulsar with POLAR. Finally, the inferred ability of pulsar detection with POLAR-2 (the successor of POLAR) will also be discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا