ترغب بنشر مسار تعليمي؟ اضغط هنا

Few-shot object detection is an imperative and long-lasting problem due to the inherent long-tail distribution of real-world data. Its performance is largely affected by the data scarcity of novel classes. But the semantic relation between the novel classes and the base classes is constant regardless of the data availability. In this work, we investigate utilizing this semantic relation together with the visual information and introduce explicit relation reasoning into the learning of novel object detection. Specifically, we represent each class concept by a semantic embedding learned from a large corpus of text. The detector is trained to project the image representations of objects into this embedding space. We also identify the problems of trivially using the raw embeddings with a heuristic knowledge graph and propose to augment the embeddings with a dynamic relation graph. As a result, our few-shot detector, termed SRR-FSD, is robust and stable to the variation of shots of novel objects. Experiments show that SRR-FSD can achieve competitive results at higher shots, and more importantly, a significantly better performance given both lower explicit and implicit shots. The benchmark protocol with implicit shots removed from the pretrained classification dataset can serve as a more realistic setting for future research.
We motivate and present feature selective anchor-free (FSAF) module, a simple and effective building block for single-shot object detectors. It can be plugged into single-shot detectors with feature pyramid structure. The FSAF module addresses two li mitations brought up by the conventional anchor-based detection: 1) heuristic-guided feature selection; 2) overlap-based anchor sampling. The general concept of the FSAF module is online feature selection applied to the training of multi-level anchor-free branches. Specifically, an anchor-free branch is attached to each level of the feature pyramid, allowing box encoding and decoding in the anchor-free manner at an arbitrary level. During training, we dynamically assign each instance to the most suitable feature level. At the time of inference, the FSAF module can work jointly with anchor-based branches by outputting predictions in parallel. We instantiate this concept with simple implementations of anchor-free branches and online feature selection strategy. Experimental results on the COCO detection track show that our FSAF module performs better than anchor-based counterparts while being faster. When working jointly with anchor-based branches, the FSAF module robustly improves the baseline RetinaNet by a large margin under various settings, while introducing nearly free inference overhead. And the resulting best model can achieve a state-of-the-art 44.6% mAP, outperforming all existing single-shot detectors on COCO.
Large-scale object detection datasets (e.g., MS-COCO) try to define the ground truth bounding boxes as clear as possible. However, we observe that ambiguities are still introduced when labeling the bounding boxes. In this paper, we propose a novel bo unding box regression loss for learning bounding box transformation and localization variance together. Our loss greatly improves the localization accuracies of various architectures with nearly no additional computation. The learned localization variance allows us to merge neighboring bounding boxes during non-maximum suppression (NMS), which further improves the localization performance. On MS-COCO, we boost the Average Precision (AP) of VGG-16 Faster R-CNN from 23.6% to 29.1%. More importantly, for ResNet-50-FPN Mask R-CNN, our method improves the AP and AP90 by 1.8% and 6.2% respectively, which significantly outperforms previous state-of-the-art bounding box refinement methods. Our code and models are available at: github.com/yihui-he/KL-Loss
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا