ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural Radiance Fields (NeRF) have recently gained a surge of interest within the computer vision community for its power to synthesize photorealistic novel views of real-world scenes. One limitation of NeRF, however, is its requirement of accurate c amera poses to learn the scene representations. In this paper, we propose Bundle-Adjusting Neural Radiance Fields (BARF) for training NeRF from imperfect (or even unknown) camera poses -- the joint problem of learning neural 3D representations and registering camera frames. We establish a theoretical connection to classical image alignment and show that coarse-to-fine registration is also applicable to NeRF. Furthermore, we show that naively applying positional encoding in NeRF has a negative impact on registration with a synthesis-based objective. Experiments on synthetic and real-world data show that BARF can effectively optimize the neural scene representations and resolve large camera pose misalignment at the same time. This enables view synthesis and localization of video sequences from unknown camera poses, opening up new avenues for visual localization systems (e.g. SLAM) and potential applications for dense 3D mapping and reconstruction.
Dense 3D object reconstruction from a single image has recently witnessed remarkable advances, but supervising neural networks with ground-truth 3D shapes is impractical due to the laborious process of creating paired image-shape datasets. Recent eff orts have turned to learning 3D reconstruction without 3D supervision from RGB images with annotated 2D silhouettes, dramatically reducing the cost and effort of annotation. These techniques, however, remain impractical as they still require multi-view annotations of the same object instance during training. As a result, most experimental efforts to date have been limited to synthetic datasets. In this paper, we address this issue and propose SDF-SRN, an approach that requires only a single view of objects at training time, offering greater utility for real-world scenarios. SDF-SRN learns implicit 3D shape representations to handle arbitrary shape topologies that may exist in the datasets. To this end, we derive a novel differentiable rendering formulation for learning signed distance functions (SDF) from 2D silhouettes. Our method outperforms the state of the art under challenging single-view supervision settings on both synthetic and real-world datasets.
The recovery of 3D shape and pose from 2D landmarks stemming from a large ensemble of images can be viewed as a non-rigid structure from motion (NRSfM) problem. Classical NRSfM approaches, however, are problematic as they rely on heuristic priors on the 3D structure (e.g. low rank) that do not scale well to large datasets. Learning-based methods are showing the potential to reconstruct a much broader set of 3D structures than classical methods -- dramatically expanding the importance of NRSfM to atemporal unsupervised 2D to 3D lifting. Hitherto, these learning approaches have not been able to effectively model perspective cameras or handle missing/occluded points -- limiting their applicability to in-the-wild datasets. In this paper, we present a generalized strategy for improving learning-based NRSfM methods to tackle the above issues. Our approach, Deep NRSfM++, achieves state-of-the-art performance across numerous large-scale benchmarks, outperforming both classical and learning-based 2D-3D lifting methods.
In this paper, we address the problem of 3D object mesh reconstruction from RGB videos. Our approach combines the best of multi-view geometric and data-driven methods for 3D reconstruction by optimizing object meshes for multi-view photometric consis tency while constraining mesh deformations with a shape prior. We pose this as a piecewise image alignment problem for each mesh face projection. Our approach allows us to update shape parameters from the photometric error without any depth or mask information. Moreover, we show how to avoid a degeneracy of zero photometric gradients via rasterizing from a virtual viewpoint. We demonstrate 3D object mesh reconstruction results from both synthetic and real-world videos with our photometric mesh optimization, which is unachievable with either naive mesh generation networks or traditional pipelines of surface reconstruction without heavy manual post-processing.
We address the problem of finding realistic geometric corrections to a foreground object such that it appears natural when composited into a background image. To achieve this, we propose a novel Generative Adversarial Network (GAN) architecture that utilizes Spatial Transformer Networks (STNs) as the generator, which we call Spatial Transformer GANs (ST-GANs). ST-GANs seek image realism by operating in the geometric warp parameter space. In particular, we exploit an iterative STN warping scheme and propose a sequential training strategy that achieves better results compared to naive training of a single generator. One of the key advantages of ST-GAN is its applicability to high-resolution images indirectly since the predicted warp parameters are transferable between reference frames. We demonstrate our approach in two applications: (1) visualizing how indoor furniture (e.g. from product images) might be perceived in a room, (2) hallucinating how accessories like glasses would look when matched with real portraits.
The problem of obtaining dense reconstruction of an object in a natural sequence of images has been long studied in computer vision. Classically this problem has been solved through the application of bundle adjustment (BA). More recently, excellent results have been attained through the application of photometric bundle adjustment (PBA) methods -- which directly minimize the photometric error across frames. A fundamental drawback to BA & PBA, however, is: (i) their reliance on having to view all points on the object, and (ii) for the object surface to be well textured. To circumvent these limitations we propose semantic PBA which incorporates a 3D object prior, obtained through deep learning, within the photometric bundle adjustment problem. We demonstrate state of the art performance in comparison to leading methods for object reconstruction across numerous natural sequences.
Reconstructing 3D shapes from a sequence of images has long been a problem of interest in computer vision. Classical Structure from Motion (SfM) methods have attempted to solve this problem through projected point displacement & bundle adjustment. Mo re recently, deep methods have attempted to solve this problem by directly learning a relationship between geometry and appearance. There is, however, a significant gap between these two strategies. SfM tackles the problem from purely a geometric perspective, taking no account of the object shape prior. Modern deep methods more often throw away geometric constraints altogether, rendering the results unreliable. In this paper we make an effort to bring these two seemingly disparate strategies together. We introduce learned shape prior in the form of deep shape generators into Photometric Bundle Adjustment (PBA) and propose to accommodate full 3D shape generated by the shape prior within the optimization-based inference framework, demonstrating impressive results.
Conventional methods of 3D object generative modeling learn volumetric predictions using deep networks with 3D convolutional operations, which are direct analogies to classical 2D ones. However, these methods are computationally wasteful in attempt t o predict 3D shapes, where information is rich only on the surfaces. In this paper, we propose a novel 3D generative modeling framework to efficiently generate object shapes in the form of dense point clouds. We use 2D convolutional operations to predict the 3D structure from multiple viewpoints and jointly apply geometric reasoning with 2D projection optimization. We introduce the pseudo-renderer, a differentiable module to approximate the true rendering operation, to synthesize novel depth maps for optimization. Experimental results for single-image 3D object reconstruction tasks show that we outperforms state-of-the-art methods in terms of shape similarity and prediction density.
In this paper we present a new approach for efficient regression based object tracking which we refer to as Deep- LK. Our approach is closely related to the Generic Object Tracking Using Regression Networks (GOTURN) framework of Held et al. We make t he following contributions. First, we demonstrate that there is a theoretical relationship between siamese regression networks like GOTURN and the classical Inverse-Compositional Lucas & Kanade (IC-LK) algorithm. Further, we demonstrate that unlike GOTURN IC-LK adapts its regressor to the appearance of the currently tracked frame. We argue that this missing property in GOTURN can be attributed to its poor performance on unseen objects and/or viewpoints. Second, we propose a novel framework for object tracking - which we refer to as Deep-LK - that is inspired by the IC-LK framework. Finally, we show impressive results demonstrating that Deep-LK substantially outperforms GOTURN. Additionally, we demonstrate comparable tracking performance to current state of the art deep-trackers whilst being an order of magnitude (i.e. 100 FPS) computationally efficient.
In this paper, we establish a theoretical connection between the classical Lucas & Kanade (LK) algorithm and the emerging topic of Spatial Transformer Networks (STNs). STNs are of interest to the vision and learning communities due to their natural a bility to combine alignment and classification within the same theoretical framework. Inspired by the Inverse Compositional (IC) variant of the LK algorithm, we present Inverse Compositional Spatial Transformer Networks (IC-STNs). We demonstrate that IC-STNs can achieve better performance than conventional STNs with less model capacity; in particular, we show superior performance in pure image alignment tasks as well as joint alignment/classification problems on real-world problems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا