ترغب بنشر مسار تعليمي؟ اضغط هنا

113 - Chen Yang , Aiai Jia , Xue Deng 2014
Wave-particle duality of photons with losses in the Mach-Zehnder interferometer (MZI) is investigated experimentally and theoretically. The experiment is done with the standard MZI with the beam splitter or the beam merger being continuously varied. The losses are deliberately introduced either inside the MZI (the two arms between the beam splitter and beam mergers) or outside the MZI (after the beam merger). It is proved that the unbalanced losses have great influence on the predictability $P$ (particle nature) and visibility $V$ (wave nature). For the former case the duality inequality holds while for the later the duality inequality is ``violated. We get $P^2+V^2>1$. This ``violation could be eliminated in principle by switching the two paths and detectors and then averaging the results. The observed results can be exactly explained theoretically. The experiment is done with coherent beam, instead of single photons, and we have proved that they are exactly equivalent in duality experiment with MZI.
How users in a dynamic system perform learning and make decision become more and more important in numerous research fields. Although there are some works in the social learning literatures regarding how to construct belief on an uncertain system sta te, few study has been conducted on incorporating social learning with decision making. Moreover, users may have multiple concurrent decisions on different objects/resources and their decisions usually negatively influence each others utility, which makes the problem even more challenging. In this paper, we propose an Indian Buffet Game to study how users in a dynamic system learn the uncertain system state and make multiple concurrent decisions by not only considering the current myopic utility, but also taking into account the influence of subsequent users decisions. We analyze the proposed Indian Buffet Game under two different scenarios: customers request multiple dishes without budget constraint and with budget constraint. For both cases, we design recursive best response algorithms to find the subgame perfect Nash equilibrium for customers and characterize special properties of the Nash equilibrium profile under homogeneous setting. Moreover, we introduce a non-Bayesian social learning algorithm for customers to learn the system state, and theoretically prove its convergence. Finally, we conduct simulations to validate the effectiveness and efficiency of the proposed algorithms.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا