ترغب بنشر مسار تعليمي؟ اضغط هنا

We examine the nonperturbative effect of maximum momentum on the relativistic wave equations. In momentum representation, we obtain the exact eigen-energies and wavefunctions of one-dimensional Klein-Gordon and Dirac equation with linear confining po tentials, and the Dirac oscillator. Bound state solutions are only possible when the strength of scalar potential are stronger than vector potential. The energy spectrum of the systems studied are bounded from above, whereby classical characteristics are observed in the uncertainties of position and momentum operators. Also, there is a truncation in the maximum number of bound states that is allowed. Some of these quantum-gravitational features may have future applications.
We construct the exact position representation of a deformed quantum mechanics which exhibits an intrinsic maximum momentum and use it to study problems such as a particle in a box and scattering from a step potential, among others. In particular, we show that unlike usual quantum mechanics, the present deformed case delays the formation of bound states in a finite potential well. In the process we also highlight some limitations and pit-falls of low-momentum or perturbative treatments and thus resolve two puzzles occurring in the literature.
We examine a deformed quantum mechanics in which the commutator between coordinates and momenta is a function of momenta. The Jacobi identity constraint on a two-parameter class of such modified commutation relations (MCRs) shows that they encode an intrinsic maximum momentum; a sub-class of which also imply a minimum position uncertainty. Maximum momentum causes the bound state spectrum of the one-dimensional harmonic oscillator to terminate at finite energy, whereby classical characteristics are observed for the studied cases. We then use a semi-classical analysis to discuss general concave potentials in one dimension and isotropic power-law potentials in higher dimensions. Among other conclusions, we find that in a subset of the studied MCRs, the leading order energy shifts of bound states are of opposite sign compared to those obtained using string-theory motivated MCRs, and thus these two cases are more easily distinguishable in potential experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا