ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider the free energy difference restricted to a finite volume for certain pairs of incongruent thermodynamic states (if they exist) in the Edwards-Anderson Ising spin glass at nonzero temperature. We prove that the variance of this quantity wi th respect to the couplings grows proportionally to the volume in any dimension greater than or equal to two. As an illustration of potential applications, we use this result to restrict the possible structure of Gibbs states in two dimensions.
Motivated by its relevance for the study of perturbations of one-dimensional voter models, including stochastic Potts models at low temperature, we consider diffusively rescaled coalescing random walks with branching and killing. Our main result is c onvergence to a new continuum process, in which the random space-time paths of the Sun-Swart Brownian net are terminated at a Poisson cloud of killing points. We also prove existence of a percolation transition as the killing rate varies. Key issues for convergence are the relations of the discrete model killing points and their Poisson intensity measure to the continuum counterparts.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا