ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate Schmidts conjecture (i.e., that the star formation rate scales in a power-law fashion with the gas density) for four well-studied local molecular clouds (GMCs). Using the Bayesian methodology we show that a local Schmidt scaling relati on of the form Sigma*(A_K) = kappa x (A_K)^{beta} (protostars pc^{-2}) exists within (but not between) GMCs. Further we find that the Schmidt scaling law, by itself, does not provide an adequate description of star formation activity in GMCs. Because the total number of protostars produced by a cloud is given by the product of Sigma*(A_K) and S(> A_K), the differential surface area distribution function, integrated over the entire cloud, the clouds structure plays a fundamental role in setting the level of its star formation activity. For clouds with similar functional forms of Sigma*(A_K), observed differences in their total SFRs are primarily due to the differences in S(> A_K) between the clouds. The coupling of Sigma*(A_K) with the measured S(> A_K) in these clouds also produces a steep jump in the SFR and protostellar production above A_K ~ 0.8 magnitudes. Finally, we show that there is no global Schmidt law that relates the star formation rate and gas mass surface densities between GMCs. Consequently, the observed Kennicutt-Schmidt scaling relation for disk galaxies is likely an artifact of unresolved measurements of GMCs and not a result of any underlying physical law of star formation characterizing the molecular gas.
We present a near-infrared extinction map of a large region (approximately 2200 deg^2) covering the Orion, the Monoceros R2, the Rosette, and the Canis Major molecular clouds. We used robust and optimal methods to map the dust column density in the n ear-infrared (NICER and NICEST) towards ~19 million stars of the Two Micron All Sky Survey (2MASS) point source catalog. Over the relevant regions of the field, we reached a 1-sigma error of 0.03 mag in the K-band extinction with a resolution of 3 arcmin. We measured the cloud distances by comparing the observed density of foreground stars with the prediction of galactic models, thus obtaining d_{Orion A} = (371 +/- 10) pc, d_{Orion B} = (398 +/- 12) pc, $d_{Mon R2} = (905 +/- 37) pc, $d_{Rosette} = (1330 +/- 48) pc, and $d_{CMa} = (1150 +/- 64) pc, values that compare very well with independent estimates.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا