ترغب بنشر مسار تعليمي؟ اضغط هنا

The Dark Energy Spectroscopic Instrument (DESI) is a Stage IV ground-based dark energy experiment that will measure the expansion history of the Universe using the Baryon Acoustic Oscillation technique. The spectra of 35 million galaxies and quasars over 14000 square degrees will be measured during the life of the experiment. We describe the installation of the major elements of the instrument at the Mayall 4m telescope, completed in late 2019. The previous prime focus corrector, spider vanes, and upper rings were removed from the Mayalls Serrurier truss and replaced with the newly-constructed DESI ring, vanes, cage, hexapod, and optical corrector. The new corrector was optically aligned with the primary mirror using a laser tracker system. The DESI focal plane system was integrated to the corrector, with each of its ten 500-fiber-positioner petal segments installed using custom installation hardware and the laser tracker. Ten DESI spectrographs with 30 cryostats were installed in a newly assembled clean room in the Large Coude Room. The ten cables carrying 5000 optical fibers from the positioners in the focal plane were routed down the telescope through cable wraps at the declination and hour angle axes, and their integral slitheads were integrated with the ten spectrographs. The fiber view camera assembly was installed to the Mayalls primary mirror cell. Servers for the instrument control system replaced existing computer equipment. The fully integrated instrument has been commissioned and is ready to start its operations phase.
471 - Ellie Hadjiyska 2012
We describe the La Silla-QUEST (LSQ) Variability Survey. LSQ is a dedicated wide-field synoptic survey in the Southern Hemisphere, focussing on the discovery and study of transients ranging from low redshift (z < 0.1) SN Ia, Tidal Disruption events, RR Lyr{ae} variables, CVs, Quasars, TNOs and others. The survey utilizes the 1.0-m Schmidt Telescope of the European Southern Observatory at La Silla, Chile, with the large-area QUEST camera, a mosaic of 112 CCDs with field of view of 9.6 square degrees. The LSQ Survey was commissioned in 2009, and is now regularly covering ~1000 square deg per night with a repeat cadence of hours to days. The data are currently processed on a daily basis. We present here a first look at the photometric capabilities of LSQ and we discuss some of the most interesting recent transient detections.
Accurate measurement of galaxy cluster masses is an essential component not only in studies of cluster physics, but also for probes of cosmology. However, different mass measurement techniques frequently yield discrepant results. The SDSS MaxBCG cata logs mass-richness relation has previously been constrained using weak lensing shear, Sunyaev-Zeldovich (SZ), and X-ray measurements. The mass normalization of the clusters as measured by weak lensing shear is >~25% higher than that measured using SZ and X-ray methods, a difference much larger than the stated measurement errors in the analyses. We constrain the mass-richness relation of the MaxBCG galaxy cluster catalog by measuring the gravitational lensing magnification of type I quasars in the background of the clusters. The magnification is determined using the quasars variability and the correlation between quasars variability amplitude and intrinsic luminosity. The mass-richness relation determined through magnification is in agreement with that measured using shear, confirming that the lensing strength of the clusters implies a high mass normalization, and that the discrepancy with other methods is not due to a shear-related systematic measurement error. We study the dependence of the measured mass normalization on the cluster halo orientation. As expected, line-of-sight clusters yield a higher normalization; however, this minority of haloes does not significantly bias the average mass-richness relation of the catalog.
In December 2010, NASA created a Science Definition Team (SDT) for WFIRST, the Wide Field Infra-Red Survey Telescope, recommended by the Astro 2010 Decadal Survey as the highest priority for a large space mission. The SDT was chartered to work with t he WFIRST Project Office at GSFC and the Program Office at JPL to produce a Design Reference Mission (DRM) for WFIRST. This paper describes an Interim DRM. The DRM will be completed in 2012.
We identify 3,113 highly variable objects in 7,200 square degrees of the Palomar-QUEST Survey, which each varied by more than 0.4 magnitudes simultaneously in two broadband optical filters on timescales from hours to roughly 3.5 years. The primary go al of the selection is to find blazars by their well-known violent optical variability. Because most known blazars have been found in radio and/or X-ray wavelengths, a sample discovered through optical variability may have very different selection effects, elucidating the range of behavior possible in these systems. A set of blazars selected in this unusual manner will improve our understanding of the physics behind this extremely variable and diverse class of AGN. The object positions, variability statistics, and color information are available using the Palomar-QUEST CasJobs server. The time domain is just beginning to be explored over large sky areas; we do not know exactly what a violently variable sample will hold. About 20% of the sample has been classified in the literature; over 70% of those objects are known or likely AGN. The remainder largely consists of a variety of variable stars, including a number of RR Lyrae and cataclysmic variables.
We study the ensemble optical variability of 276 FSRQs and 86 BL Lacs in the Palomar-QUEST Survey with the goal of searching for common fluctuation properties, examining the range of behavior across the sample, and characterizing the appearance of bl azars in such a survey so that future work can more easily identify such objects. The survey, which covers 15,000 square degrees multiple times over 3.5 years, allows for the first ensemble blazar study of this scale. Variability amplitude distributions are shown for the FSRQ and BL Lac samples for numerous time lags, and also studied through structure function analyses. Individual blazars show a wide range of variability amplitudes, timescales, and duty cycles. Of the best sampled objects, 35% are seen to vary by more than 0.4 magnitudes; for these, the fraction of measurements contributing to the high amplitude variability ranges constantly from about 5% to 80%. Blazar variability has some similarities to that of type I quasars but includes larger amplitude fluctuations on all timescales. FSRQ variability amplitudes are particularly similar to those of QSOs on timescales of several months, suggesting significant contributions from the accretion disk to the variable flux at these timescales. Optical variability amplitudes are correlated with the maximum apparent velocities of the radio jet for the subset of FSRQs with MOJAVE VLBA measurements, implying that the optically variable fluxs strength is typically related to that of the radio emission. We also study CRATES radio-selected FSRQ candidates, which show similar variability characteristics to known FSRQs; this suggests a high purity for the CRATES sample.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا