ترغب بنشر مسار تعليمي؟ اضغط هنا

In this work, we attempt to address the following problem: Given a large number of unlabeled face images, cluster them into the individual identities present in this data. We consider this a relevant problem in different application scenarios ranging from social media to law enforcement. In large-scale scenarios the number of faces in the collection can be of the order of hundreds of million, while the number of clusters can range from a few thousand to millions--leading to difficulties in terms of both run-time complexity and evaluating clustering and per-cluster quality. An efficient and effective Rank-Order clustering algorithm is developed to achieve the desired scalability, and better clustering accuracy than other well-known algorithms such as k-means and spectral clustering. We cluster up to 123 million face images into over 10 million clusters, and analyze the results in terms of both external cluster quality measures (known face labels) and internal cluster quality measures (unknown face labels) and run-time. Our algorithm achieves an F-measure of 0.87 on a benchmark unconstrained face dataset (LFW, consisting of 13K faces), and 0.27 on the largest dataset considered (13K images in LFW, plus 123M distractor images). Additionally, we present preliminary work on video frame clustering (achieving 0.71 F-measure when clustering all frames in the benchmark YouTube Faces dataset). A per-cluster quality measure is developed which can be used to rank individual clusters and to automatically identify a subset of good quality clusters for manual exploration.
Due to the prevalence of social media websites, one challenge facing computer vision researchers is to devise methods to process and search for persons of interest among the billions of shared photos on these websites. Facebook revealed in a 2013 whi te paper that its users have uploaded more than 250 billion photos, and are uploading 350 million new photos each day. Due to this humongous amount of data, large-scale face search for mining web images is both important and challenging. Despite significant progress in face recognition, searching a large collection of unconstrained face images has not been adequately addressed. To address this challenge, we propose a face search system which combines a fast search procedure, coupled with a state-of-the-art commercial off the shelf (COTS) matcher, in a cascaded framework. Given a probe face, we first filter the large gallery of photos to find the top-k most similar faces using deep features generated from a convolutional neural network. The k candidates are re-ranked by combining similarities from deep features and the COTS matcher. We evaluate the proposed face search system on a gallery containing 80 million web-downloaded face images. Experimental results demonstrate that the deep features are competitive with state-of-the-art methods on unconstrained face recognition benchmarks (LFW and IJB-A). Further, the proposed face search system offers an excellent trade-off between accuracy and scalability on datasets consisting of millions of images. Additionally, in an experiment involving searching for face images of the Tsarnaev brothers, convicted of the Boston Marathon bombing, the proposed face search system could find the younger brothers (Dzhokhar Tsarnaev) photo at rank 1 in 1 second on a 5M gallery and at rank 8 in 7 seconds on an 80M gallery.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا