ترغب بنشر مسار تعليمي؟ اضغط هنا

In this work we construct reliable a posteriori estimates for some discontinuous Galerkin schemes applied to nonlinear systems of hyperbolic conservation laws. We make use of appropriate reconstructions of the discrete solution together with the rela tive entropy stability framework. The methodology we use is quite general and allows for a posteriori control of discontinuous Galerkin schemes with standard flux choices which appear in the approximation of conservation laws. In addition to the analysis, we conduct some numerical benchmarking to test the robustness of the resultant estimator.
We design consistent discontinuous Galerkin finite element schemes for the approximation of the Euler-Korteweg and the Navier-Stokes-Korteweg systems. We show that the scheme for the Euler-Korteweg system is energy and mass conservative and that the scheme for the Navier-Stokes-Korteweg system is mass conservative and monotonically energy dissipative. In this case the dissipation is isolated to viscous effects, that is, there is no numerical dissipation. In this sense the methods is consistent with the energy dissipation of the continuous PDE systems.
We derive a posteriori error estimates in the $L_infty((0,T];L_infty(Omega))$ norm for approximations of solutions to linear para bolic equations. Using the elliptic reconstruction technique introduced by Makridakis and Nochetto and heat kernel estim ates for linear parabolic pr oblems, we first prove a posteriori bounds in the maximum norm for semidiscrete finite element approximations. We then establish a posteriori bounds for a fully discrete backward Euler finite element approximation. The elliptic reconstruction technique greatly simplifies our development by allow ing the straightforward combination of heat kernel estimates with existing elliptic maximum norm error estimators.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا