ترغب بنشر مسار تعليمي؟ اضغط هنا

A tunneling spectroscopy study is presented of superconducting MoN and Nb$_{0.8}$Ti$_{0.2}$N thin films grown by atomic layer deposition (ALD). The films exhibited a superconducting gap of 2meV and 2.4meV respectively with a corresponding critical te mperature of 11.5K and 13.4K, among the highest reported $T_c$ values achieved by the ALD technique. Tunnel junctions were obtained using a mechanical contact method with a Au tip. While the native oxides of these films provided poor tunnel barriers, high quality tunnel junctions with low zero bias conductance (below $sim$10%) were obtained using an artificial tunnel barrier of Al$_2$O$_3$ on the films surface grown $textit{ex situ}$ by ALD. We find a large critical current density on the order of $4times 10^6$A/cm$^2$ at $T=0.8T_c$ for a 60nm MoN film and demonstrate conformal coating capabilities of ALD onto high aspect ratio geometries. These results suggest the ALD technique offers significant promise for thin film superconducting device applications.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا