ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the temperature dependence of the transport critical current density (Jc) in textured Sr1-xKxFe2As2/Fe (Sr122) tapes fabricated by an ex situ powder-in-tube process. Critical currents were measured in magnetic fields up to 0-15 T and/or the temperature range 4.2-30 K by using a dc four-probe method. It was found that textured Sr122 tapes heat-treated at low temperatures showed higher transport Jc performance due to much improved intergrain connections. At temperatures of 20 K, easily obtained using a cryocooler, Jc reached ~ 10^4 A/cm^2 in self field, which is the highest transport value of ferropnictide wires and tapes reported so far. Magneto-optical imaging observations further revealed significant and well distributed global Jc at 20 K in our tapes. These results demonstrate that 122 type superconducting tapes are promising for high-field applications at around 20 K.
SmFeAsO1-xFx tapes were prepared using three kinds of starting materials. It shows that the starting materials have an obvious effect on the impurity phases in final superconducting tapes. Compared with the other samples, the samples fabricated by Sm As, FeO, Fe2As, and SmF3 have the smallest arsenide impurity phase and voids. As a result, these samples possess much denser structure and better grain connectivity. Moreover, among the three kinds of samples fabricated in this work, this kind of sample has the highest zero-resistivity temperature ~40 K and largest critical current density ~4600 A/cm^2 in self-field at 4.2 K. This is the highest Jc values reported so far for SmFeAsO1-xFx wires and tapes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا