ترغب بنشر مسار تعليمي؟ اضغط هنا

87 - Sohee Park , Changwon Park , 2014
Among two-dimensional atomic crystals, hexagonal boron nitride (hBN) is one of the most remarkable materials to fabricate heterostructures revealing unusual properties. We perform first-principles calculations to determine whether intercalated metal atoms and vacancies can mediate interfacial coupling and influence the structural and electronic properties of the graphene/hBN heterostructure. Metal impurity atoms (Li, K, Cr, Mn, Co, and Cu) as extrinsic defects between the graphene and hBN sheets produce $n$-doped graphene. We also consider intrinsic vacancy defects and find that a boron monovacancy in hBN act as a magnetic dopant for graphene whereas a nitrogen monovacancy in hBN serves as a nonmagnetic dopant for graphene. In contrast, smallest triangular vacancy defects in hBN are unlikely to result in significant changes in the electronic transport of graphene. Our findings reveal that the hBN layer with some vacancies or metal impurities enhance the interlayer coupling in the graphene/hBN heterostructure with respect to charge doping and electron scattering.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا