ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron correlations amplify quantum fluctuations and, as such, they have been recognized as the origin of a rich landscape of quantum phases. Whether and how they lead to gapless topological states is an outstanding question, and a framework that a llows for determining novel phases and identifying new materials is in pressing need. Here we advance a general approach, in which strong correlations cooperate with crystalline symmetry to drive gapless topological states. We test this design principle by exploring Kondo lattice models and materials whose space group symmetries may promote different kinds of electronic degeneracies, with a particular focus on square-net systems. Weyl-Kondo nodal-line semimetals -- with nodes pinned to the Fermi energy -- are identified in both two and three dimensions. We apply the approach to identify materials for the realization of these correlation-driven topological semimetal phases. Our findings illustrate the potential of the proposed design principle to guide the search for new topological phases and materials in a broad range of strongly correlated systems.
There have been extensive recent developments on kagome metals, such as T$_m$X$_n$ (T= Fe, Co and X= Sn, Ge) and $A$V$_3$Sb$_5$ ($A=$ Cs, K, Rb). An emerging issue is the nature of correlated phases when topologically textit{non-trivial} bands cross the Fermi level. Here, we consider an extended Hubbard model on the kagome lattice in the presence of spin-orbit couplings, involving a Kramers pair of bands that have opposite Chern numbers and are isolated in the band structure. We construct an effective model in a time-reversal (T) symmetric lattice description. We determine the correlated phases of this model and identify a density-wave order in the phase diagram. We show that this order is T-breaking, which originates from the Wannier orbitals lacking a common Wannier center -- a fingerprint of the underlying $Z_2$ topology. Implications of our results for the correlation physics of the kagome metals are discussed.
We employ Momentum-Resolved Electron Energy Loss Spectroscopy (M-EELS) on Bi2.1Sr1.9CaCu2O8+x to resolve the issue of the kink feature in the electron dispersion widely observed in the cuprates. To this end, we utilize the GW approximation to relate the density response function measured in in M-EELS to the self-energy, isolating contributions from phonons, electrons, and the momentum dependence of the effective interaction to the decay rates. The phononic contributions, present in the M-EELS spectra due to electron-phonon coupling, lead to kink features in the corresponding single-particle spectra at energies between 40 meV and 80 meV, independent of the doping level. We find that a repulsive interaction constant in momentum space is able to yield the kink attributed to phonons in ARPES. Hence, our analysis of the M-EELS spectra points to local repulsive interactions as a factor that enhances the spectroscopic signatures of electron-phonon coupling in cuprates. We conclude that the strength of the kink feature in cuprates is determined by the combined action of electron-phonon coupling and electron-electron interactions.
59 - Bikash Padhi , Chandan Setty , 2018
We devise a model to explain why twisted bi-layer graphene (TBLG) exhibits insulating behavior when $ u=2,3$ charges occupy a unit moire cell, a feature attributed to Mottness, but not for $ u=1$, clearly inconsistent with Mott insulation. We compute $r_s=E_U/E_K$, where $E_U$ and $E_K$ are the potential and kinetic energies, respectively, and show that (i) the Mott criterion lies at a density $10^4$ higher than in the experiments and (ii) a transition to a series of Wigner crystalline states exists as a function of $ u$. We find, for $ u=1$, $r_s$ fails to cross the threshold ($r_s = 37$) for the triangular lattice and metallic transport ensues. However, for $ u=2$ and $ u=3$, the thresholds, $r_s=22$, and $r_s=17$, respectively are satisfied for a transition to Wigner crystals (WCs) with a honeycomb ($ u=2$) and kagome ($ u=3$) structure. We believe, such crystalline states form the correct starting point for analyzing superconductivity.
We address the question of the mismatch between the zero momentum limits of the transverse and longitudinal dielectric functions for a fixed direction of the driving field observed in the cuprates. This question translates to whether or not the order in which the longitudinal and transverse momentum transfers are taken to zero commute. While the two limits commute for both isotropic and anisotropic Drude metals, we argue that a scaleless vertex interaction that depends solely on the angle between scattered electron momenta is sufficient to achieve non-commutativity of the two limits even for a system that is inherently isotropic. We demonstrate this claim for a simple case of the Drude conductivity modified by electron-boson interactions through appropriate vertex corrections, and outline possible consequences of our result to optical and electron energy loss spectroscopy (EELS) measurements close to zero momentum transfer
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا