ترغب بنشر مسار تعليمي؟ اضغط هنا

The coherence of quantum Hall (QH) edges play the deciding factor in demonstrating an electron interferometer, which has potential to realize a topological qubit. A Graphene p-n junction (PNJ) with co-propagating spin and valley polarized QH edges is a promising platform for studying an electron interferometer. However, though a few experiments have been attempted for such PNJ via conductance measurements, the edge dynamics (coherent or incoherent) of QH edges at a PNJ, where either spin or valley symmetry or both are broken, remain unexplored. In this work, we have carried out the measurements of conductance together with shot noise, an ideal tool to unravel the dynamics, at low temperature (~ 10mK) in a dual graphite gated hexagonal boron nitride (hBN) encapsulated high mobility graphene device. The conductance data show that the symmetry broken QH edges at the PNJ follow spin selective equilibration. The shot noise results as a function of both p and n side filling factors reveal the unique dependence of the scattering mechanism with filling factors. Remarkably, the scattering is found to be fully tunable from incoherent to coherent regime with the increasing number of QH edges at the PNJ, shedding crucial insights into graphene based electron interferometer.
Epitaxial self-assembled quantum dots (SAQDs) are of both technological and fundamental interest, but their reliable manufacture still presents a technical challenge. To better understand the formation, morphology and ordering of epitaxial self-assem bled quantum dots (SAQDs), it is essential to have an accurate model that can aid further experiments and predict the trends in SAQD formation. SAQDs form because of the destabilizing effect of elastic mismatch strain, but most analytic models and some numerical models of SAQD formation either assume an elastically homogeneous anisotropic film-substrate system or assume an elastically heterogeneous isotropic system. In this work, we perform the full film-substrate elastic calculation. Then we incorporate the elasticity calculation into a stochastic linear growth model. We find that using homogeneous elasticity can cause errors in the elastic energy density as large as 26%, and for typical modeling parameters lead to errors of about 11% in the estimated value of average dot spacing. We also quantify the effect of elastic heterogeneity on the order estimates of SAQDs and confirm previous finding on the possibility of order enhancement by growing a film near the critical film height.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا