ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural shape representations have recently shown to be effective in shape analysis and reconstruction tasks. Existing neural network methods require point coordinates and corresponding normal vectors to learn the implicit level sets of the shape. Nor mal vectors are often not provided as raw data, therefore, approximation and reorientation are required as pre-processing stages, both of which can introduce noise. In this paper, we propose a divergence guided shape representation learning approach that does not require normal vectors as input. We show that incorporating a soft constraint on the divergence of the distance function favours smooth solutions that reliably orients gradients to match the unknown normal at each point, in some cases even better than approaches that use ground truth normal vectors directly. Additionally, we introduce a novel geometric initialization method for sinusoidal shape representation networks that further improves convergence to the desired solution. We evaluate the effectiveness of our approach on the task of surface reconstruction and show state-of-the-art performance compared to other unoriented methods and on-par performance compared to oriented methods.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا