ترغب بنشر مسار تعليمي؟ اضغط هنا

Conflicting interpretations of experimental data preclude the understanding of the quantum magnetic state of spin-orbit coupled d$^2$ double perovskites. Whether the ground state is a Janh-Teller-distorted order of quadrupoles or the hitherto elusive octupolar order remains debated. We resolve this uncertainty through direct calculations of all-rank inter-site exchange interactions and inelastic neutron scattering (INS) cross-section for the d$^2$ double perovskite series Ba$_2M$OsO$_6$ ($M$= Ca, Mg, Zn). Using advanced many-body first principles methods we show that the ground state is formed by ferro-ordered octupoles coupled within the ground-stated $E_g$ doublet. Computed ordering temperature of the single second-order phase-transition and gapped excitation spectra are fully consistent with observations. Minuscule distortions of the parent cubic structure are shown to qualitatively modify the structure of magnetic excitations.
We present the first approximation free diagrammatic Monte Carlo study of a lattice polaron interacting with an acoustic phonon branch through the deformation potential. Weak and strong coupling regimes are separated by a self-trapping region where q uantum resonance between various possible lattice deformations is seen in the ground state properties, spectral function, and optical conductivity. The unique feature of such polaron is the interplay between long- and short wavelength acoustic vibrations creating a composite phonon cloud and leading to persistent self-trapping due to the existence of multiple quasi-stable states. This results in a spectral response whose structure is much more complex than in any of the previously considered polaron models.
Modern computing facilities grant access to first-principles density-functional theory study of complex physical and chemical phenomena in materials, that require large supercell to properly model the system. However, supercells are associated to sma ll Brillouin zones in the reciprocal space, leading to folded electronic eigenstates that make the analysis and interpretation extremely challenging. Various techniques have been proposed and developed in order to reconstruct the electronic band structures of super cells, unfolded into the reciprocal space of an ideal primitive cell. Here, we propose an efficient unfolding scheme embedded directly in the Vienna Ab-initio Simulation Package (VASP), that requires modest computational resources and allows for an automatized mapping from the reciprocal space of the supercell to primitive cell Brillouin zone. This algorithm can computes band structures, Fermi surfaces and spectral functions, by using an integrated post-processing tool (bands4vasp). The method is here applied to a selected variety of complex physical situations: the effect of doping on the band dispersion in the BaFe$_{rm 2(1-x)}$Ru$_{rm 2x}$As$_2$ superconductor, the interaction between adsorbates and polaronic states on the TiO$_2$(110) surface, and the band splitting induced by non-collinear spin fluctuations in EuCd$_2$As$_2$.
There is intense controversy around the unconventional superconductivity in strontium ruthenate, where the various theoretical and experimental studies suggest diverse and mutually exclusive pairing symmetries. Currently, the investigation is solely focused on only one material, Sr2RuO4, and the field suffers from the lack of comparison targets. Here, employing a density functional theory based analysis, we show that the heterostructure composed of SrRuO3 and SrTiO3 is endowed with all the key characteristics of Sr2RuO4, and, in principle, can host superconductivity. Furthermore, we show that competing magnetic phases and associated frustration, naturally affecting the superconducting state, can be tuned by epitaxial strain engineering. This system thus offers an excellent platform for gaining more insight into superconductivity in ruthenates.
We present an ab-initio density-functional-theory approach for calculating electron-phonon interactions within the projector augmented-wave method. The required electron-phonon matrix elements are defined as the second derivative of the one-electron energies in the PAW method. As the PAW method leads to a generalized eigenvalue problem, the resulting electron-phonon matrix elements lack some symmetries that are usually present for simple eigenvalue problems and all-electron formulations. We discuss the relation between our definition of the electron-phonon matrix element and other formulations. To allow for efficient evaluation of physical properties, we introduce a Wannier-interpolation scheme, again adapted to generalized eigenvalue problems. To explore the methods numerical characteristics, the temperature-dependent band-gap renormalization of diamond is calculated and compared with previous publications. Furthermore, we apply the method to selected binary compounds and show that the obtained zero-point renormalizations agree well with other values found in literature and experiments.
Recently, two nonempirical hybrid functionals, dielectric-dependent range-separated hybrid functional based on the Coulomb-attenuating method (DD-RSH-CAM) and doubly screened hybrid functional (DSH), have been suggested by [Chen et al, Phys. Rev. Mat er. 2, 073803 (2018)] and [Cui et al, J. Phys. Chem. Lett. 9, 2338 (2018)], respectively. These two hybrid functionals are both based on a common model dielectric function approach, but differ in the way how to non-empirically obtain the range-separation parameter. By retaining the full short-range Fock exchange and a fraction of the long-range Fock exchange that equals the inverse of the dielectric constant, both DD-RSH-CAM and DSH turn out to perform very well in predicting the band gaps for a large variety of semiconductors and insulators. Here, we assess how these two hybrid functionals perform on challenging antiferromagnetic transition-metal monoxides MnO, FeO, CoO, and NiO by comparing them to other conventional hybrid functionals and the $GW$ method. We find that single-shot DD0-RSH-CAM and DSH0 improve the band gaps towards experiments as compared to conventional hybrid functionals. The magnetic moments are slightly increased, but the predicted dielectric constants are decreased. The valence band density of states (DOS) predicted by DD0-RSH-CAM and DSH0 are as satisfactory as HSE03 in comparison to experimental spectra, however, the conduction band DOS are shifted to higher energies by about 2 eV compared to HSE03. Self-consistent DD-RSH-CAM and DSH deteriorate the results with a significant overestimation of band gaps.
Using $textit{ab-initio}$ crystal structure prediction we study the high-pressure phase diagram of $textit{A}BiO_3$ bismuthates ($A$=Ba, Sr, Ca) in a pressure range up to 100$~$GPa. All compounds show a transition from the low-pressure perovskite str ucture to highly distorted, low-symmetry phases at high pressures (PD transition), and remain charge disproportionated and insulating up to the highest pressure studied. The PD transition at high pressures in bismuthates can be understood as a combined effect of steric arguments and of the strong tendency of bismuth to charge-disproportionation. In fact, distorted structures permit to achieve a very efficient atomic packing, and at the same time, to have Bi-O bonds of different lengths. The shift of the PD transition to higher pressures with increasing cation size within the $textit{A}BiO_3$ series can be explained in terms of chemical pressure.
Rare-earth nickelates exhibit a metal-insulator transition accompanied by a structural distortion that breaks the symmetry between formerly equivalent Ni sites. The quantitative theoretical description of this coupled electronic-structural instabilit y is extremely challenging. Here, we address this issue by simultaneously taking into account both structural and electronic degrees of freedom using a charge self-consistent combination of density functional theory and dynamical mean-field theory, together with screened interaction parameters obtained from the constrained random phase approximation. Our total energy calculations show that the coupling to an electronic instability towards a charge disproportionated insulating state is crucial to stabilize the structural distortion, leading to a clear first order character of the coupled transition. The decreasing octahedral rotations across the series suppress this electronic instability and simultaneously increase the screening of the effective Coulomb interaction, thus weakening the correlation effects responsible for the metal-insulator transition. Our approach allows to obtain accurate values for the structural distortion and thus facilitates a comprehensive understanding, both qualitatively and quantitatively, of the complex interplay between structural properties and electronic correlation effects across the nickelate series.
BaBiO3 is a well-known example of a 3D charge density wavecompound, in which the CDW behavior is induced by charge disproportionation at the Bi site. At ambient pressure, this compound is a charge-ordered insulator, but little is known about its high -pressure behavior. In this work, we study from first-principles the high-pressure phase diagram of BaBiO3 using phonon modes analysis and evolutionary crystal structure prediction. We show that charge disproportionation is very robust in this compound and persists up to 100 GPa. This causes the system to remain insulating up to the highest pressure we studied.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا