ترغب بنشر مسار تعليمي؟ اضغط هنا

112 - Cenxi Yuan , Chong Qi , Furong Xu 2014
The properties of loosely bound proton-rich nuclei around A = 20 are investigated within the framework of nuclear shell model. In these nuclei, the strength of the effective interactions involving the loosely bound proton s1=2 orbit are significantly reduced in comparison with those in their mirror nuclei. We evaluate the reduction of the effective interaction by calculating the monopole-baseduniversal interaction (VMU) in the Woods-Saxon basis. The shell-model Hamiltonian in the sd shell, such as USD, can thus be modified to reproduce the binding energies and energy levels of the weakly bound proton-rich nuclei around A = 20. The effect of the reduction of the effective interaction on the structure and decay properties of these nuclei is also discussed.
We study boron, carbon, nitrogen and oxygen isotopes with a newly constructed shell-model Hamiltonian developed from monopole-based-universal interaction ($V_{MU}$). The present Hamiltonian can reproduce well the ground-state energies, energy levels, electric quadrupole properties and spin properties of these nuclei in full psd model space including $(0-3)hbaromega$ excitations. Especially, it correctly describes the drip lines of carbon and oxygen isotopes and the spins of the ground states of $^{10}$B and $^{18}$N while some former interactions such as WBP and WBT fail. We point out that the inclusion of $2hbaromega$ excitations is important in reproducing some of these properties. In the present $(0+2)hbaromega$ calculations small but constant E2 effective charges appear to work quite well. As the inclusion of the $2hbaromega$ model space makes rather minor change, this seems to be related to the smallness of $^{4}$He core. Similarly, the spin g factors are very close to free values. The applicability of tensor and spin-orbit forces in free space, which are taken in the present Hamiltonian, is examined in shell model calculations.
70 - Cenxi Yuan , Chong Qi , Furong Xu 2012
Full shell-model diagonalization has been performed to study the structure of neutron-rich nuclei around $^{20}$C. We investigate in detail the roles played by the different monopole components of the effective interaction in the evolution of the N=1 4 shell in C, N and O isotopes. It is found that the relevant neutron-neutron monopole terms, $V^{nn}_{d_{5/2}d_{5/2}}$ and $V^{nn}_{s_{1/2}s_{1/2}}$, contribute significantly to the reduction of the N=14 shell gap in C and N isotopes in comparison with that in O isotopes. The origin of this unexpectedly large effect, which is comparable with (sometimes even larger than) that caused by the proton-neutron interaction, is related to the enhanced configuration mixing in those nuclei due to many-body correlations. Such a scheme is also supported by the large B(E2) value in the nucleus $^{20}$C which has been measured recently.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا