ترغب بنشر مسار تعليمي؟ اضغط هنا

A protocol is discussed for preparing a spin chain in a generic many-body state in the asymptotic limit of tailored non-unitary dynamics. The dynamics require the spectral resolution of the target state, optimized coherent pulses, engineered dissipat ion, and feedback. As an example, we discuss the preparation of an entangled antiferromagnetic state, and argue that the procedure can be applied to chains of trapped ions or Rydberg atoms.
We study the statistics of the work done, the fluctuation relations and the irreversible entropy production in a quantum many-body system subject to the sudden quench of a control parameter. By treating the quench as a thermodynamic transformation we show that the emergence of irreversibility in the nonequilibrium dynamics of closed many-body quantum systems can be accurately characterized. We demonstrate our ideas by considering a transverse quantum Ising model that is taken out of equilibrium by the instantaneous switching of the transverse field.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا