ترغب بنشر مسار تعليمي؟ اضغط هنا

The Tree of Life is the graphical structure that represents the evolutionary process from single-cell organisms at the origin of life to the vast biodiversity we see today. Reconstructing this tree from genomic sequences is challenging due to the var iety of biological forces that shape the signal in the data, and many of those processes like incomplete lineage sorting and hybridization can produce confounding information. Here, we present the mathematical version of the identifiability proofs of phylogenetic networks under the pseudolikelihood model in SNaQ. We establish that the ability to detect different hybridization events depends on the number of nodes on the hybridization blob, with small blobs (corresponding to closely related species) being the hardest to be detected. Our work focuses on level-1 networks, but raises attention to the importance of identifiability studies on phylogenetic inference methods for broader classes of networks.
Inference of evolutionary trees and rates from biological sequences is commonly performed using continuous-time Markov models of character change. The Markov process evolves along an unknown tree while observations arise only from the tips of the tre e. Rate heterogeneity is present in most real data sets and is accounted for by the use of flexible mixture models where each site is allowed its own rate. Very little has been rigorously established concerning the identifiability of the models currently in common use in data analysis, although non-identifiability was proven for a semi-parametric model and an incorrect proof of identifiability was published for a general parametric model (GTR+Gamma+I). Here we prove that one of the most widely used models (GTR+Gamma) is identifiable for generic parameters, and for all parameter choices in the case of 4-state (DNA) models. This is the first proof of identifiability of a phylogenetic model with a continuous distribution of rates.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا