ترغب بنشر مسار تعليمي؟ اضغط هنا

We present continued results from a wide-field, ~150 deg^2, optical photometric and spectroscopic survey of the northern part of the ~5 Myr-old Upper Scorpius OB Association. Photometry and spectral types were used to derive effective temperatures an d luminosities and place newly identified association members onto a theoretical Hertzsprung-Russell diagram. From our survey, we have discovered 145 new low mass members of the association, and determined ~10% of these objects to be actively accreting material from a surrounding circumstellar disk. Based on comparison of the spatial distributions of low and high mass association members, we find no evidence for spatial segregation by mass within the northern portion of the association. Measured data are combined with pre-main sequence evolutionary models to derive a mass and age for each star. Using Monte Carlo simulations we show that, taking into account known observational uncertainties, the observed age dispersion for the low mass population in USco is consistent with all stars forming in a single burst ~5 Myr ago, and place an upper limit of +/-3 Myr on the age spread if the star formation rate has been constant in time. We derive the first spectroscopic mass function for USco that extends into the substellar regime, and compare these results to those for three other young clusters and associations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا