ترغب بنشر مسار تعليمي؟ اضغط هنا

Circinus X-1 exhibited a bright X-ray flare in late 2013. Follow-up observations with Chandra and XMM-Newton from 40 to 80 days after the flare reveal a bright X-ray light echo in the form of four well-defined rings with radii from 5 to 13 arcminutes , growing in radius with time. The large fluence of the flare and the large column density of interstellar dust towards Circinus X-1 make this the largest and brightest set of rings from an X-ray light echo observed to date. By deconvolving the radial intensity profile of the echo with the MAXI X-ray lightcurve of the flare we reconstruct the dust distribution towards Circinus X-1 into four distinct dust concentrations. By comparing the peak in scattering intensity with the peak intensity in CO maps of molecular clouds from the Mopra Southern Galactic Plane CO Survey we identify the two innermost rings with clouds at radial velocity ~ -74 km/s and ~ -81 km/s, respectively. We identify a prominent band of foreground photoelectric absorption with a lane of CO gas at ~ -32 km/s. From the association of the rings with individual CO clouds we determine the kinematic distance to Circinus X-1 to be $D_{Cir X-1} = 9.4^{+0.8}_{-1.0}$ kpc. This distance rules out earlier claims of a distance around 4 kpc, implies that Circinus X-1 is a frequent super-Eddington source, and places a lower limit of $Gamma gtrsim 22$ on the Lorentz factor and an upper limit of $theta_{jet} lesssim 3^{circ}$ on the jet viewing angle.
We present observations of the first ten degrees of longitude in the Mopra carbon monoxide (CO) survey of the southern Galactic plane (Burton et al. 2013), covering Galactic longitude l = 320-330{deg} and latitude b = $pm$0.5{deg}, and l = 327-330{de g}, b = +0.5-1.0{deg}. These data have been taken at 35 arc sec spatial resolution and 0.1 km/s spectral resolution, providing an unprecedented view of the molecular clouds and gas of the southern Galactic plane in the 109-115 GHz J = 1-0 transitions of 12CO, 13CO, C18O and C17O. Together with information about the noise statistics from the Mopra telescope, these data can be retrieved from the Mopra CO website and the CSIRO-ATNF data archive.
We present spectral line images of [CI] 809 GHz, CO J=1-0 115 GHz and HI 1.4 GHz line emission, and calculate the corresponding C, CO and H column densities, for a sinuous, quiescent Giant Molecular Cloud about 5 kpc distant along the l=328{deg} sigh tline (hereafter G328) in our Galaxy. The [CI] data comes from the High Elevation Antarctic Terahertz (HEAT) telescope, a new facility on the summit of the Antarctic plateau where the precipitable water vapor falls to the lowest values found on the surface of the Earth. The CO and HI datasets come from the Mopra and Parkes/ATCA telescopes, respectively. We identify a filamentary molecular cloud, ~75 x 5 pc long with mass ~4 x 10E4 Msun and a narrow velocity emission range of just 4 km/s. The morphology and kinematics of this filament are similar in CO, [CI] and HI, though in the latter appears as self-absorption. We calculate line fluxes and column densities for the three emitting species, which are broadly consistent with a PDR model for a GMC exposed to the average interstellar radiation field. The [C/CO] abundance ratio averaged through the filament is found to be approximately unity. The G328 filament is constrained to be cold (Tdust < 20K) by the lack of far-IR emission, to show no clear signs of star formation, and to only be mildly turbulent from the narrow line width. We suggest that it may represent a GMC shortly after formation, or perhaps still be in the process of formation.
We present the first results from a new carbon monoxide (CO) survey of the southern Galactic plane being conducted with the Mopra radio telescope in Australia. The 12CO, 13CO and C18O J=1-0 lines are being mapped over the l = 305-345 deg, b = +/- 0.5 deg portion of the 4th quadrant of the Galaxy, at 35 spatial and 0.1 km/s spectral resolution. The survey is being undertaken with two principal science objectives: (i) to determine where and how molecular clouds are forming in the Galaxy and (ii) to probe the connection between molecular clouds and the missing gas inferred from gamma-ray observations. We describe the motivation for the survey, the instrumentation and observing techniques being applied, and the data reduction and analysis methodology. In this paper we present the data from the first degree surveyed, l = 323-324 deg, b = +/- 0.5 deg. We compare the data to the previous CO survey of this region and present metrics quantifying the performance being achieved; the rms sensitivity per 0.1 km/s velocity channel is ~1.5K for 12CO and ~0.7K for the other lines. We also present some results from the region surveyed, including line fluxes, column densities, molecular masses, 12CO/13CO line ratios and 12CO optical depths. We also examine how these quantities vary as a function of distance from the Sun when averaged over the 1 square degree survey area. Approximately 2 x 10E6 MSun of molecular gas is found along the G323 sightline, with an average H2 number density of nH2 ~ 1 cm-3 within the Solar circle. The CO data cubes will be made publicly available as they are published.
Magnetic diffusion in accretion flows changes the structure and angular momentum of the accreting material. We present two power law similarity solutions for flattened accretion flows in the presence of magnetic diffusion: a secularly-evolving Kepler ian disc and a magnetically-diluted free fall onto the central object. The influence of Hall diffusion on the solutions is evident even when this is small compared to ambipolar and Ohmic diffusion, as the surface density, accretion rate and angular momentum in the flow all depend upon the product eta_H(B.Omega), and the inclusion of Hall diffusion may be the solution to the magnetic braking catastrophe of star formation simulations.
142 - Catherine Braiding 2011
Magnetic fields play an important role in star formation by regulating the removal of angular momentum from collapsing molecular cloud cores. Hall diffusion is known to be important to the magnetic field behaviour at many of the intermediate densitie s and field strengths encountered during the gravitational collapse of molecular cloud cores into protostars, and yet its role in the star formation process is not well-studied. This thesis describes a semianalytic self-similar model of the collapse of rotating isothermal molecular cloud cores with both Hall and ambipolar diffusion, presenting similarity solutions that demonstrate that the Hall effect has a profound influence on the dynamics of collapse. ... Hall diffusion also determines the strength of the magnetic diffusion and centrifugal shocks that bound the pseudo and rotationally-supported discs, and can introduce subshocks that further slow accretion onto the protostar. In cores that are not initially rotating Hall diffusion can even induce rotation, which could give rise to disc formation and resolve the magnetic braking catastrophe. The Hall effect clearly influences the dynamics of gravitational collapse and its role in controlling the magnetic braking and radial diffusion of the field would be worth exploring in future numerical simulations of star formation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا