ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a detailed study for the finite-frequency current noise of a Kondo quantum dot in presence of a magnetic field by using a recently developed real time functional renormalization group approach [Phys. Rev. B $mathbf{83}$, 201303(R) (2011)]. The scaling equations are modified in an external magnetic field; the couplings and non-local current vertices become strongly anisotropic, and develop new singularities. Consequently, in addition to the natural emission threshold frequency, $hbaromega = |eV|$, a corresponding singular behavior is found to emerge in the noise spectrum at frequencies $hbar omega approx |eVpm B|$. The predicted singularities are measurable with present-day experimental techniques.
We show how the density-matrix numerical renormalization group (DM-NRG) method can be used in combination with non-Abelian symmetries such as SU(N), where the decomposition of the direct product of two irreducible representations requires the use of a so-called outer multiplicity label. We apply this scheme to the SU(3) symmetrical Anderson model, for which we analyze the finite size spectrum, determine local fermionic, spin, superconducting, and trion spectral functions, and also compute the temperature dependence of the conductance. Our calculations reveal a rich Fermi liquid structure.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا