ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider a Hopf algebra of simplicial complexes and provide a cancellation-free formula for its antipode. We then obtain a family of combinatorial Hopf algebras by defining a family of characters on this Hopf algebra. The characters of these combi natorial Hopf algebras give rise to symmetric functions that encode information about colorings of simplicial complexes and their $f$-vectors. We also use characters to give a generalization of Stanleys $(-1)$-color theorem. A $q$-analog version of this family of characters is also studied.
If H is a connected, graded Hopf algebra, then Takeuchis formula can be used to compute its antipode. However, there is usually massive cancellation in the result. We show how sign-reversing involutions can sometimes be used to obtain cancellation-fr ee formulas. We apply this idea to nine different examples. We rederive known formulas for the antipodes in the Hopf algebra of polynomials, the shuffle Hopf algebra, the Hopf algebra of quasisymmertic functions in both the monomial and fundamental bases, the Hopf algebra of multi-quasisymmetric functions in the fundamental basis, and the incidence Hopf algebra of graphs. We also find cancellation-free expressions for particular values of the antipode in the immaculate basis for the noncommutative symmetric functions as well as the Malvenuto-Reutenauer and Porier-Reutenauer Hopf algebras, some of which are the first of their kind. We include various conjectures and suggestions for future research.
We explore monoids generated by operators on certain infinite partial orders. Our starting point is the work of Fomin and Greene on monoids satisfying the relations $(u{r}+u{r+1})u{r+1}u{r}=u{r+1}u{r}(u{r}+u{r+1})$ and $u{r}u{t}=u{s}u{r}$ if $|r-t|>1 .$ Given such a monoid, the non-commutative functions in the variables $u{}$ are shown to commute. Symmetric functions in these operators often encode interesting structure constants. Our aim is to introduce similar results for more general monoids not satisfying the relations of Fomin and Greene. This paper is an extension of a talk by the second author at the workshop on algebraic monoids, group embeddings and algebraic combinatorics at The Fields Institute in 2012.
The main purpose of this paper is to show that the multiplication of a Schubert polynomial of finite type $A$ by a Schur function, which we refer to as Schubert vs. Schur problem, can be understood from the multiplication in the space of dual $k$-Sch ur functions. Using earlier work by the second author, we encode both problems by means of quasisymmetric functions. On the Schubert vs. Schur side, we study the poset given by the Bergeron-Sottiles $r$-Bruhat order, along with certain operators associated to this order. On the other side, we connect this poset with a graph on dual $k$-Schur functions given by studying the affine grassmannian order of Lam-Lapointe-Morse-Shimozono. Also, we define operators associated to the graph on dual $k$-Schur functions which are analogous to the ones given for the Schubert vs. Schur problem.
92 - Carolina Benedetti 2011
We provide a Hopf algebra structure on the space of superclass functions on the unipotent upper triangular group of type D over a finite field based on a supercharacter theory constructed by Andre and Neto. Also, we make further comments with respect to types B and C. Type A was explores by M. Aguiar et. al (2010), thus this paper is a contribution to understand combinatorially the supercharacter theory of the other classical Lie types.
We express the matroid polytope $P_M$ of a matroid $M$ as a signed Minkowski sum of simplices, and obtain a formula for the volume of $P_M$. This gives a combinatorial expression for the degree of an arbitrary torus orbit closure in the Grassmannian $Gr_{k,n}$. We then derive analogous results for the independent set polytope and the associated flag matroid polytope of $M$. Our proofs are based on a natural extension of Postnikovs theory of generalized permutohedra.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا