ترغب بنشر مسار تعليمي؟ اضغط هنا

We compare the results of the relativistic Greens function model with the experimental data of the charged-current inclusive differential neutrino-nucleus cross sections published by the T2K Collaboration. The model, which is able to describe both MI NER$ u$A and MiniBooNE charged-current quasielastic scattering data, underpredicts the inclusive T2K cross sections.
The analysis of quasielastic neutrino and antineutrino-nucleus scattering cross sections requires relativistic theoretical descriptions also accounting for the role of final-state interactions (FSI). In the relativistic Greens function (RGF) model FS I are described by a complex optical potential where the imaginary part recovers the contribution of final-state channels that are not included in other models based on the impulse approximation. The RGF results are compared with the data recently published by the MiniBooNE and MINER$ u$A Collaborations. The model is in general able to give a good description of the data.
The analysis of charged-current quasielastic neutrino and antineutrino-nucleus scattering cross sections requires relativistic theoretical descriptions also accounting for the role of final-state interactions. We compare the results of the relativist ic Greens function model with the data recently published by the MINER$ u$A Collaboration. The model is able to describe both MINER$ u$A and MiniBooNE data.
We present and discuss numerical predictions for the neutron density distribution of $^{208}$Pb using various non-relativistic and relativistic mean-field models for the nuclear structure. Our results are compared with the very recent pion photoprodu ction data from Mainz. The parity-violating asymmetry parameter for elastic electron scattering at the kinematics of the PREX experiment at JLab and the neutron skin thickness are compared with the available data. We consider also the dependence between the neutron skin and the parameters of the expansion of the symmetry energy.
The analysis of the recent neutral-current elastic neutrino and antineutrino-nucleus scattering cross sections measured by the MiniBooNE Collaboration requires relativistic theoretical descriptions also accounting for the role of final-state interact ions. In this work we investigate the sensitivity to final-state interactions and compare the MiniBooNE data with the results obtained in the relativistic Greens function model with different parameterizations for the phenomenological relativistic optical potential.
We present theoretical predictions for electron scattering on the N = 14, 20, and 28 isotonic chains from proton-deficient to proton-rich nuclei. The calculations are performed within the framework of the distorted-wave Born approximation and the pro ton and neutron density distributions are evaluated adopting a Relativistic Hartree-Bogoliubov (RHB) approach with a density dependent meson-exchange interaction. We present results for the elastic and quasi-elastic cross sections and for the parity-violating asymmetry parameter. Owing to the correlations between the evolution of the electric charge form factors along each chain with the underlying proton shell structure of the isotones, elastic electron scattering experiments on isotones can provide useful informations about the occupation and filling of the single-particle levels of protons.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا