ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the generation of spontaneous entanglement between two qubits chirally coupled to a waveguide. The maximum achievable concurrence is demonstrated to increase by a factor of $4/e sim 1.5$ as compared to the non-chiral coupling situation. The proposed entanglement scheme is shown to be robust against variation of the qubit properties such as detuning and separation, which are critical in the non-chiral case. This result relaxes the restrictive requirements of the non-chiral situation, paving the way towards a realistic implementation. Our results demonstrate the potential of chiral waveguides for quantum entanglement protocols.
Efficient light-matter interaction lies at the heart of many emerging technologies that seek on-chip integration of solid-state photonic systems. Plasmonic waveguides, which guide the radiation in the form of strongly confined surface plasmon-polarit on modes, represent a promising solution to manipulate single photons in coplanar architectures with unprecedented small footprints. Here we demonstrate coupling of the emission from a single quantum emitter to the channel plasmon polaritons supported by a V-groove plasmonic waveguide. Extensive theoretical simulations enable us to determine the position and orientation of the quantum emitter for optimum coupling. Concomitantly with these predictions, we demonstrate experimentally that 42% of a single nitrogen vacancy centre emission efficiently couples into the supported modes of the V-groove. This work paves the way towards practical realization of efficient and long distance transfer of energy for integrated solid-state quantum systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا