ترغب بنشر مسار تعليمي؟ اضغط هنا

65 - Carlos E. Fiore 2008
We study the applicability of the {it parallel tempering method} (PT) in the investigation of first- order phase transitions. In this method, replicas of the same system are simulated simultaneously at different temperatures and the configurations of two randomly chosen replicas can occasionally be interchanged. We apply the PT for the Blume-Emery-Griffiths (BEG) model, which displays strong first-order transitions at low temperatures. A precise estimate of coexistence lines is obtained, revealing that the PT may be a successful tool for the characterization of discontinuous transitions.
We propose an efficient procedure for determining phase diagrams of systems that are described by spin models. It consists of combining cluster algorithms with the method proposed by Sauerwein and de Oliveira where the grand canonical potential is ob tained directly from the Monte Carlo simulation, without the necessity of performing numerical integrations. The cluster algorithm presented in this paper eliminates metastability in first order phase transitions allowing us to locate precisely the first-order transitions lines. We also produce a different technique for calculating the thermodynamic limit of quantities such as the magnetization whose infinite volume limit is not straightforward in first order phase transitions. As an application, we study the Andelman model for Langmuir monolayers made of chiral molecules that is equivalent to the Blume-Emery-Griffiths spin-1 model. We have obtained the phase diagrams in the case where the intermolecular forces favor interactions between enantiomers of the same type (homochiral interactions). In particular, we have determined diagrams in the surface pressure versus concentration plane which are more relevant from the experimental point of view and less usual in numerical studies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا