ترغب بنشر مسار تعليمي؟ اضغط هنا

The growth history of large-scale structure in the Universe is a powerful probe of the cosmological model, including the nature of dark energy. We study the growth rate of cosmic structure to redshift $z = 0.9$ using more than $162{,}000$ galaxy reds hifts from the WiggleZ Dark Energy Survey. We divide the data into four redshift slices with effective redshifts $z = [0.2,0.4,0.6,0.76]$ and in each of the samples measure and model the 2-point galaxy correlation function in parallel and transverse directions to the line-of-sight. After simultaneously fitting for the galaxy bias factor we recover values for the cosmic growth rate which are consistent with our assumed $Lambda$CDM input cosmological model, with an accuracy of around 20% in each redshift slice. We investigate the sensitivity of our results to the details of the assumed model and the range of physical scales fitted, making close comparison with a set of N-body simulations for calibration. Our measurements are consistent with an independent power-spectrum analysis of a similar dataset, demonstrating that the results are not driven by systematic errors. We determine the pairwise velocity dispersion of the sample in a non-parametric manner, showing that it systematically increases with decreasing redshift, and investigate the Alcock-Paczynski effects of changing the assumed fiducial model on the results. Our techniques should prove useful for current and future galaxy surveys mapping the growth rate of structure using the 2-dimensional correlation function.
We use high-resolution N-body simulations to develop a new, flexible, empirical approach for measuring the growth rate from redshift-space distortions (RSD) in the 2-point galaxy correlation function. We quantify the systematic error in measuring the growth rate in a $1 , h^{-3}$ Gpc$^3$ volume over a range of redshifts, from the dark matter particle distribution and a range of halo-mass catalogues with a number density comparable to the latest large-volume galaxy surveys such as the WiggleZ Dark Energy Survey and the Baryon Oscillation Spectroscopic Survey (BOSS). Our simulations allow us to span halo masses with bias factors ranging from unity (probed by emission-line galaxies) to more massive haloes hosting Luminous Red Galaxies. We show that the measured growth rate is sensitive to the model adopted for the small-scale real-space correlation function, and in particular that the standard assumption of a power-law correlation function can result in a significant systematic error in the growth rate determination. We introduce a new, empirical fitting function that produces results with a lower (5-10%) amplitude of systematic error. We also introduce a new technique which permits the galaxy pairwise velocity distribution, the quantity which drives the non-linear growth of structure, to be measured as a non-parametric stepwise function. Our (model-independent) results agree well with an exponential pairwise velocity distribution, expected from theoretical considerations, and are consistent with direct measurements of halo velocity differences from the parent catalogues. In a companion paper we present the application of our new methodology to the WiggleZ Survey dataset.
In this paper the action of the BFKL Pomeron calculus is re-written in momentum representation, and the equations of motion for nucleus-nucleus collisions are derived, in this representation. We found the semi-classical solutions to these equations, outside of the saturation domain. Inside this domain these equations reduce to the set of delay differential equations, and their asymptotic solutions are derived.
The Carnegie Supernova Project (CSP) is a five-year survey being carried out at the Las Campanas Observatory to obtain high-quality light curves of ~100 low-redshift Type Ia supernovae in a well-defined photometric system. Here we present the first r elease of photometric data that contains the optical light curves of 35 Type Ia supernovae, and near-infrared light curves for a subset of 25 events. The data comprise 5559 optical (ugriBV) and 1043 near-infrared (YJHKs) data points in the natural system of the Swope telescope. Twenty-eight supernovae have pre-maximum data, and for 15 of these, the observations begin at least 5 days before B maximum. This is one of the most accurate datasets of low-redshift Type Ia supernovae published to date. When completed, the CSP dataset will constitute a fundamental reference for precise determinations of cosmological parameters, and serve as a rich resource for comparison with models of Type Ia supernovae.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا