ترغب بنشر مسار تعليمي؟ اضغط هنا

Colour centres in diamond are promising candidates as a platform for quantum technologies and biomedical imaging based on spins and/or photons. Controlling the emission properties of colour centres in diamond is a key requirement for developing effic ient single photon sources with high collection efficiency. A number of groups have produced enhancement in the emission rate over narrow wavelength ranges by coupling single emitters in nanodiamond crystals to resonant electromagnetic structures. Here we characterise in detail the spontaneous emission rates of nitrogen-vacancy centres positioned in various locations on a structured substrate. We show an average factor of 1.5 enhancement of the total emission rate when nanodiamonds are on an opal photonic crystal surface, and observe changes in the lifetime distribution. We present a model to explain these observations and associate the lifetime properties with dipole orientation and polarization effects.
Fluorescent defects in non-cytotoxic diamond nanoparticles are candidates for qubits in quantum computing, optical labels in biomedical imaging and sensors in magnetometry. For each application these defects need to be optically and thermodynamically stable, and included in individual particles at suitable concentrations (singly or in large numbers). In this letter, we combine simulations, theory and experiment to provide the first comprehensive and generic prediction of the size, temperature and nitrogen-concentration dependent stability of optically active NV defects in nanodiamonds.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا