ترغب بنشر مسار تعليمي؟ اضغط هنا

Semiconductor heterostructures are the fundamental platform for many important device applications such as lasers, light-emitting diodes, solar cells and high-electron-mobility transistors. Analogous to traditional heterostructures, layered transitio n metal dichalcogenide (TMDC) heterostructures can be designed and built by assembling individual single-layers into functional multilayer structures, but in principle with atomically sharp interfaces, no interdiffusion of atoms, digitally controlled layered components and no lattice parameter constraints. Nonetheless, the optoelectronic behavior of this new type of van der Waals (vdW) semiconductor heterostructure is unknown at the single-layer limit. Specifically, it is experimentally unknown whether the optical transitions will be spatially direct or indirect in such hetero-bilayers. Here, we investigate artificial semiconductor heterostructures built from single layer WSe2 and MoS2 building blocks. We observe a large Stokes-like shift of ~100 meV between the photoluminescence peak and the lowest absorption peak that is consistent with a type II band alignment with spatially direct absorption but spatially indirect emission. Notably, the photoluminescence intensity of this spatially indirect transition is strong, suggesting strong interlayer coupling of charge carriers. The coupling at the hetero-interface can be readily tuned by inserting hexagonal BN (h-BN) dielectric layers into the vdW gap. The generic nature of this interlayer coupling consequently provides a new degree of freedom in band engineering and is expected to yield a new family of semiconductor heterostructures having tunable optoelectronic properties with customized composite layers.
The temperature-induced shift of the Raman G line in epitaxial graphene on SiC and Ni surfaces, as well as in graphene supported on SiO2, is investigated with Raman spectroscopy. The thermal shift rate of epitaxial graphene on 6H-SiC(0001) is found t o be about three times that of freestanding graphene. This result is explained quantitatively as a consequence of pinning by the substrate. In contrast, graphene grown on polycrystalline Ni films is shown to be unpinned, i.e., to behave elastically as freestanding, despite the relatively strong interaction with the metal substrate. Moreover, it is shown that the transfer of exfoliated graphene layers onto a supporting substrate can result in pinned or unpinned layers, depending on the transfer protocol.
The early stages of epitaxial graphene layer growth on the Si-terminated 6H-SiC(0001) are investigated by Auger electron spectroscopy (AES) and depolarized Raman spectroscopy. The selection of the depolarized component of the scattered light results in a significant increase in the C-C bond signal over the second order SiC Raman signal, which allows to resolve submonolayer growth, including individual, localized C=C dimers in a diamond-like carbon matrix for AES C/Si ratio of $sim$3, and a strained graphene layer with delocalized electrons and Dirac single-band dispersion for AES C/Si ratio $>$6. The linear strain, measured at room temperature, is found to be compressive, which can be attributed to the large difference between the coefficients of thermal expansion of graphene and SiC. The magnitude of the compressive strain can be varied by adjusting the growth time at fixed annealing temperature.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا