ترغب بنشر مسار تعليمي؟ اضغط هنا

169 - Fabien Clery , Carel Faber , 2019
We show how one can use the representation theory of ternary quartics to construct all vector-valued Siegel modular forms and Teichmuller modular forms of degree 3. The relation between the order of vanishing of a concomitant on the locus of double c onics and the order of vanishing of the corresponding modular form on the hyperelliptic locus plays an important role. We also determine the connection between Teichmuller cusp forms on overline{M}_g and the middle cohomology of symplectic local systems on M_g. In genus 3, we make this explicit in a large number of cases.
We prove a formula, conjectured by Zagier, for the $S_n$-equivariant Euler characteristic of the top weight cohomology of $M_{g,n}$.
We use covariants of binary sextics to describe the structure of modules of scalar-valued or vector-valued Siegel modular forms of degree 2 with character, over the ring of scalar-valued Siegel modular forms of even weight. For a modular form defined by a covariant we express the order of vanishing along the locus of products of elliptic curves in terms of the covariant.
We extend Igusas description of the relation between invariants of binary sextics and Siegel modular forms of degree two to a relation between covariants and vector-valued Siegel modular forms of degree two. We show how this relation can be used to e ffectively calculate the Fourier expansions of Siegel modular forms of degree two.
263 - Carel Faber 2012
After recalling the various tautological algebras of the moduli space of curves and some of its partial compactifications and stating several well-known results and conjectures concerning these algebras, we prove that the natural extension to the cas e of pointed curves of a 1996 conjecture of Hain and Looijenga is true if and only if two of the stated conjectures are true.
435 - Carel Faber , Nicola Pagani 2012
Let the bielliptic locus be the closure in the moduli space of stable curves of the locus of smooth curves that are double covers of genus 1 curves. In this paper we compute the class of the bielliptic locus in bar{M}_3 in terms of a standard basis o f the rational Chow group of codimension-2 classes in the moduli space. Our method is to test the class on the hyperelliptic locus: this gives the desired result up to two free parameters, which are then determined by intersecting the locus with two surfaces in bar{M}_3.
We give an explicit conjectural formula for the motivic Euler characteristic of an arbitrary symplectic local system on the moduli space A_3 of principally polarized abelian threefolds. The main term of the formula is a conjectural motive of Siegel m odular forms of a certain type; the remaining terms admit a surprisingly simple description in terms of the motivic Euler characteristics for lower genera. The conjecture is based on extensive counts of curves of genus three and abelian threefolds over finite fields. It provides a lot of new information about vector-valued Siegel modular forms of degree three, such as dimension formulas and traces of Hecke operators. We also use it to predict several lifts from genus 1 to genus 3, as well as lifts from G_2 and new congruences of Harder type.
208 - Paolo Aluffi , Carel Faber 2009
Every complex plane curve C determines a subscheme S of the $P^8$ of 3x3 matrices, whose projective normal cone (PNC) captures subtle invariants of C. In Limits of PGL(3)-translates of plane curves, I we obtain a set-theoretic description of the PNC and thereby we determine all possible limits of families of plane curves whose general element is isomorphic to C. The main result of this article is the determination of the PNC as a cycle; this is an essential ingredient in our computation in Linear orbits of arbitrary plane curves of the degree of the PGL(3)-orbit closure of an arbitrary plane curve, an invariant of natural enumerative significance.
157 - Paolo Aluffi , Carel Faber 2009
We classify all possible limits of families of translates of a fixed, arbitrary complex plane curve. We do this by giving a set-theoretic description of the projective normal cone (PNC) of the base scheme of a natural rational map, determined by the curve, from the $P^8$ of 3x3 matrices to the $P^N$ of plane curves of degree $d$. In a sequel to this paper we determine the multiplicities of the components of the PNC. The knowledge of the PNC as a cycle is essential in our computation of the degree of the PGL(3)-orbit closure of an arbitrary plane curve, performed in our earlier paper Linear orbits of arbitrary plane curves.
128 - Jonas Bergstrom , Carel Faber , 2008
We study the cohomology of certain local systems on moduli spaces of principally polarized abelian surfaces with a level 2 structure. The trace of Frobenius on the alternating sum of the etale cohomology groups of these local systems can be calculate d by counting the number of pointed curves of genus 2 with a prescribed number of Weierstrass points over the given finite field. This cohomology is intimately related to vector-valued Siegel modular forms. The corresponding scheme in level 1 was carried out in [FvdG]. Here we extend this to level 2 where new phenomena appear. We determine the contribution of the Eisenstein cohomology together with its S_6-action for the full level 2 structure and on the basis of our computations we make precise conjectures on the endoscopic contribution. We also make a prediction about the existence of a vector-valued analogue of the Saito-Kurokawa lift. Assuming these conjectures that are based on ample numerical evidence, we obtain the traces of the Hecke-operators T(p) for p < 41 on the remaining spaces of `genuine Siegel modular forms. We present a number of examples of 1-dimensional spaces of eigenforms where these traces coincide with the Hecke eigenvalues. We hope that the experts on lifting and on endoscopy will be able to prove our conjectures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا