ترغب بنشر مسار تعليمي؟ اضغط هنا

118 - Canqi Yao , Shibo Chen , 2021
This paper considers the vehicle routing problem of a fleet operator to serve a set of transportation requests with flexible time windows. That is, the operator presents discounted transportation costs to customers to exchange the time flexibility of pickup or delivery. A win-win routing schedule can be achieved via such a process. Different from previous research, we propose a novel bi-level optimization framework, to fully characterize the interaction and negotiation between the fleet operator and customers. In addition, by utilizing the property of strong duality, and the KKT optimality condition of customer optimization problem, the bi-level vehicle routing problem can be equivalently reformulated as a mixed integer nonlinear programming (MINLP) problem. Besides, an efficient algorithm combining the merits of Lagrangian dual decomposition method and Benders decomposition method, is devised to solve the resultant MINLP problem. Finally, extensive numerical experiments are conducted, which validates the effectiveness of proposed bi-level model on the operation cost saving, and the efficacy of proposed solution algorithm on computation speed.
63 - Canqi Yao , Shibo Chen , 2021
To handle the detrimental effects brought by leakage of radioactive gases at nuclear power station, we propose a bus based evacuation optimization problem. The proposed model incorporates the following four constraints, 1) the maximum dose of radiati on per evacuee, 2) the limitation of bus capacity, 3) the number of evacuees at demand node (bus pickup stop), 4) evacuees balance at demand and shelter nodes, which is formulated as a mixed integer nonlinear programming (MINLP) problem. Then, to eliminate the difficulties of choosing a proper M value in Big-M method, a Big-M free method is employed to linearize the nonlinear terms of the MINLP problem. Finally, the resultant mixed integer linear program (MILP) problem is solvable with efficient commercial solvers such as CPLEX or Gurobi, which guarantees the optimal evacuation plan obtained. To evaluate the effectiveness of proposed evacuation model, we test our model on two different scenarios (a random one and a practical scenario). For both scenarios, our model attains executable evacuation plan within given 3600 seconds computation time.
123 - Canqi Yao , Shibo Chen , 2021
Logistics has gained great attentions with the prosperous development of commerce, which is often seen as the classic optimal vehicle routing problem. Meanwhile, electric vehicle (EV) has been widely used in logistic fleet to curb the emission of gre en house gases in recent years. Solving the optimization problem of joint routing and charging of multiple EVs is in a urgent need, whose objective function includes charging time, charging cost, EVs travel time, usage fees of EV and revenue from serving customers. This joint problem is formulated as a mixed integer programming (MIP) problem, which, however, is NP-hard due to integer restrictions and bilinear terms from the coupling between routing and charging decisions. The main contribution of this paper lies at proposing an efficient two stage algorithm that can decompose the original MIP problem into two linear programming (LP) problems, by exploiting the exactness of LP relaxation and eliminating the coupled term. This algorithm can achieve a nearoptimal solution in polynomial time. In addition, another variant algorithm is proposed based on the two stage one, to further improve the quality of solution.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا