ترغب بنشر مسار تعليمي؟ اضغط هنا

We show that a spontaneous magnetic moment may appear at the edge of a spin-triplet superconductor if the system allows for pairing in a subdominant channel. To unveil the microscopic mechanism behind such effect we combine numerical solution of the Bogoliubov-De Gennes equations for a tight-binding model with nearest-neighbor attraction, and the symmetry based Ginzburg-Landau approach. We find that a potential barrier modulating the electronic density near the edge of the system leads to a non-unitary superconducting state close to the boundary where spin-singlet pairing coexists with the dominant triplet superconducting order. We demonstrate that the spin polarization at the edge appears due to the inhomogeneity of the non-unitary state and originates in the lifting of the spin-degeneracy of the Andreev bound-states.
We show that mixed-parity superconductors may exhibit equal-spin pair correlations that are odd-in-time and can be tuned by means of an applied field. The direction and the amplitude of the pair correlator in the spin space turn out to be strongly de pendent on the symmetry of the order parameter, and thus provide a tool to identify different types of singlet-triplet mixed configurations. We find that odd-in-time spin-polarized pair correlations can be generated without magnetic inhomogeneities in superconducting/ferromagnetic hybrids when parity mixing is induced at the interface.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا