ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the ground-state phase diagram of the spinful extended Haldane-Hubbard model on the honeycomb lattice using an exact-diagonalization, mean-field variational approach, and further complement it with the infinite density matrix renormali zation group, applied to an infinite honeycomb cylinder. This model, governed by both on-site and nearest-neighbor interactions, can result in two types of insulators with finite local order parameters, either with spin or charge ordering. Moreover, a third one, a topologically nontrivial insulator with nonlocal order, is also manifest. We test expectations of previous analyses in spinle
We investigate the real-time dynamics of the half-filled one-dimensional extended Hubbard model in the strong-coupling regime, when driven by a transient laser pulse. Starting from a wide regime displaying a charge-density wave in equilibrium, a robu st photoinduced in-gap state appears in the optical conductivity, depending on the parameters of the pulse. Here, by tuning its conditions, we maximize the overlap of the time-evolving wavefunction with excited states displaying the elusive bond-ordered wave of this model. Finally, we make a clear connection between the emergence of this order and the formation of the aforementioned in-gap state, suggesting the potential observation of purely electronic (i.e., not associated with a Peierls instability) bond-ordered waves in experiments involving molecular crystals.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا