ترغب بنشر مسار تعليمي؟ اضغط هنا

We present Keck/DEIMOS spectroscopy of stars in the recently discovered Milky Way satellites Hydra II, Pisces II, and Laevens 1. We measured a velocity dispersion of 5.4 (+3.6 -2.4) km/s for Pisces II, but we did not resolve the velocity dispersions of Hydra II or Laevens 1. We marginally resolved the metallicity dispersions of Hydra II and Pisces II but not Laevens 1. Furthermore, Hydra II and Pisces II obey the luminosity-metallicity relation for Milky Way dwarf galaxies (<[Fe/H]> = -2.02 +/- 0.08 and -2.45 +/- 0.07, respectively), whereas Laevens 1 does not (<[Fe/H]> = -1.68 +/- 0.05). The kinematic and chemical properties suggest that Hydra II and Pisces II are dwarf galaxies, and Laevens 1 is a globular cluster. We determined that two of the previously observed blue stars near the center of Laevens 1 are not members of the cluster. A third blue star has ambiguous membership. Hydra II has a radial velocity <v_helio> = 303.1 +/- 1.4 km/s, similar to the leading arm of the Magellanic stream. The mass-to-light ratio for Pisces II is 370 (+310 -240) M_sun/L_sun. It is not among the most dark matter-dominated dwarf galaxies, but it is still worthy of inclusion in the search for gamma rays from dark matter self-annihilation.
We present 0.95-1.80 $mu$m spectroscopy of the $sim$12-27 $M_{rm Jup}$ companion orbiting the faint ($R$$sim$13.6), young ($sim$120 Myr) M-dwarf 2MASS J01225093--2439505 (2M0122--2439 B) at 1.5 arcsecond separation (50 AU). Our coronagraphic long-sli t spectroscopy was obtained with the new high contrast imaging platform VLT-SPHERE during Science Verification. The unique long-slit capability of SPHERE enables spectral resolution an order of magnitude higher than other extreme AO exoplanet imaging instruments. With a low mass, cool temperature, and very red colors, 2M0122-2439 B occupies a particularly important region of the substellar color-magnitude diagram by bridging the warm directly imaged hot planets with late-M/early-L spectral types (e.g. $beta$ Pic b and ROXs 42Bb) and the cooler, dusty objects near the L/T transition (e.g. HR 8799bcde and 2MASS 1207b). We fit BT-Settl atmospheric models to our $R$$approx$350 spectrum and find $T_{rm eff}$=1600$pm$100 K and $log(g)$=4.5$pm$0.5 dex. Visual analysis of our 2M0122-2439 B spectrum suggests a spectral type L3-L4, and we resolve shallow $J$-band alkali lines, confirming its low gravity and youth. Specifically, we use the Allers & Liu (2013) spectral indices to quantitatively measure the strength of the FeH, VO, KI, spectral features, as well as the overall $H$-band shape. Using these indices, along with the visual spectral type analysis, we classify 2M0122-2439 B as an intermediate gravity (INT-G) object with spectral type L3.7$pm$1.0.
We study the interaction of feedback from active galactic nuclei (AGN) and a multi-phase interstellar medium (ISM), in simulations including explicit stellar feedback, multi-phase cooling, accretion-disk winds, and Compton heating. We examine radii ~ 0.1-100 pc around a black hole (BH), where the accretion rate onto the BH is determined and where AGN-powered winds and radiation couple to the ISM. We conclude: (1) The BH accretion rate is determined by exchange of angular momentum between gas and stars in gravitational instabilities. This produces accretion rates ~0.03-1 Msun/yr, sufficient to power luminous AGN. (2) The gas disk in the galactic nucleus undergoes an initial burst of star formation followed by several Myrs where stellar feedback suppresses the star formation rate (SFR). (3) AGN winds injected at small radii with momentum fluxes ~L/c couple efficiently to the ISM and have dramatic effects on ISM properties within ~100 pc. AGN winds suppress the nuclear SFR by factors ~10-30 and BH accretion rate by factors ~3-30. They increase the outflow rate from the nucleus by factors ~10, consistent with observational evidence for galaxy-scale AGN-driven outflows. (4) With AGN feedback, the predicted column density distribution to the BH is consistent with observations. Absent AGN feedback, the BH is isotropically obscured and there are not enough optically-thin sightlines to explain Type-I AGN. A torus-like geometry arises self-consistently as AGN feedback evacuates gas in polar regions.
We report on high resolution CO(1-0), CS(2-1) and 3mm continuum Combined Array for Research in Millimeter Astronomy (CARMA) observations of the molecular outflow host and nearest quasar Markarian 231. We use the CS(2-1) measurements to derive a dense gas mass within Mrk231 of $1.8pm0.3times10^{10}~M_odot$, consistent with previous measurements. The CS(2-1) data also seem to indicate that the molecular disk of Mrk231 is forming stars at about normal efficiency. The high resolution CARMA observations were able to resolve the CO(1-0) outflow into two distinct lobes, allowing for a size estimate to be made and further constraining the molecular outflow dynamical time, further constraining the molecular gas escape rate. We find that 15% of the molecular gas within the Mrk231 outflow actually exceeds the escape velocity in the central kiloparsec. Assuming that molecular gas is not constantly being accelerated, we find the depletion timescale of molecular gas in Mrk231 to be 49Myr, rather than 32Myr, more consistent with the poststarburst stellar population observed in the system.
120 - Yong Shi 2014
The first galaxies contain stars born out of gas with little or no metals. The lack of metals is expected to inhibit efficient gas cooling and star formation but this effect has yet to be observed in galaxies with oxygen abundance relative to hydroge n below a tenth of that of the Sun. Extremely metal poor nearby galaxies may be our best local laboratories for studying in detail the conditions that prevailed in low metallicity galaxies at early epochs. Carbon Monoxide (CO) emission is unreliable as tracers of gas at low metallicities, and while dust has been used to trace gas in low-metallicity galaxies, low-spatial resolution in the far-infrared has typically led to large uncertainties. Here we report spatially-resolved infrared observations of two galaxies with oxygen abundances below 10 per cent solar, and show that stars form very inefficiently in seven star-forming clumps of these galaxies. The star formation efficiencies are more than ten times lower than found in normal, metal rich galaxies today, suggesting that star formation may have been very inefficient in the early Universe.
79 - M. H. Cohen 2014
We study the kinematics of ridge lines on the pc-scale jet of the active galactic nucleus BL Lac. We show that the ridge lines display transverse patterns that move superluminally downstream, and that the moving patterns are analogous to waves on a w hip. Their apparent speeds $beta_mathrm{app}$ (units of $c$) range from 3.9 to 13.5, corresponding to $beta_mathrm{wave}^mathrm{gal}= 0.981 - 0.998$ in the galaxy frame. We show that the magnetic field in the jet is well-ordered with a strong transverse component, and assume that it is helical and that the transverse patterns are Alfven waves propagating downstream on the longitudinal component of the magnetic field. The wave-induced transverse speed of the jet is non-relativistic ($beta_mathrm{tr}^mathrm{gal} lesssim 0.09$). In 2010 the wave activity subsided and the jet then displayed a mild wiggle that had a complex oscillatory behaviour. The Alfven waves appear to be excited by changes in the position angle of the recollimation shock, in analogy to exciting a wave on a whip by shaking the handle. A simple model of the system with plasma sound speed $beta_mathrm{s}=0.3$ and apparent speed of a slow MHD wave $beta_mathrm{app,S}=4$ yields Lorentz factor of the beam $Gamma_mathrm{beam} sim 4.5$, pitch angle of the helix (in the beam frame) $alphasim 67^circ$, Alfven speed $beta_mathrm{A}sim 0.64$, and magnetosonic Mach number $M_mathrm{ms}sim 4.7$. This describes a plasma in which the magnetic field is dominant and in a rather tight helix, and Alfven waves are responsible for the moving transverse patterns.
61 - Yong Shi 2014
As a step toward a comprehensive overview of the infrared diagnostics of the central engines and host galaxies of quasars at low redshift, we present Spitzer Space Telescope spectroscopic (5-40 {mu}m) and photometric (24, 70 and 160 {mu}m) measuremen ts of all Palomar-Green (PG) quasars at z < 0.5 and 2MASS quasars at z < 0.3. We supplement these data with Herschel measurements at 160 {mu}m. The sample is composed of 87 optically selected PG quasars and 52 near-IR selected 2MASS quasars. Here we present the data, measure the prominent spectral features, and separate emission due to star formation from that emitted by the dusty circumnuclear torus. We find that the mid-IR (5-30 {mu}m) spectral shape for the torus is largely independent of quasar IR luminosity with scatter in the SED shape of ~ 0.2 dex. Except for the silicate features, no large difference is observed between PG (unobscured - silicate emission) and 2MASS (obscured - silicate absorption) quasars. Only mild silicate features are observed in both cases. When in emission, the peak wavelength of the silicate feature tends to be longer than 9.7 {mu}m, possibly indicating effects on grain properties near the AGN. The IR color is shown to correlate with the equivalent width of the aromatic features, indicating that the slope of the quasar mid- to far-IR SED is to first order driven by the fraction of radiation from star formation in the IR bands.
We report NuSTAR observations of the millisecond pulsar - low mass X-ray binary (LMXB) transition system PSR J1023+0038 from June and October 2013, before and after the formation of an accretion disk around the neutron star. Between June 10-12, a few days to two weeks before the radio disappearance of the pulsar, the 3-79 keV X-ray spectrum was well fit by a simple power law with a photon index of Gamma=1.17 +/-0.08 (at 90% confidence) with a 3-79 keV luminosity of 7.4+/-0.4 x 10^32 erg/s. Significant orbital modulation was observed with a modulation fraction of 36+/-10%. During the October 19-21 observation, the spectrum is described by a softer power law (Gamma=1.66+/-0.06) with an average luminosity of 5.8+/-0.2 x 10^33 erg/s and a peak luminosity of ~1.2 x 10^34 erg/s observed during a flare. No significant orbital modulation was detected. The spectral observations are consistent with previous and current multi-wavelength observations and show the hard X-ray power law extending to 79 keV without a spectral break. Sharp edged, flat bottomed `dips are observed with widths between 30-1000 s and ingress and egress time-scales of 30-60 s. No change in hardness ratio was observed during the dips. Consecutive dip separations are log-normal in distribution with a typical separation of approximately 400 s. These dips are distinct from dipping activity observed in LMXBs. We compare and contrast these dips to observations of dips and state changes in the similar transition systems PSR J1824-2452I and XSS J1227.0-4859 and discuss possible interpretations based on the transitions in the inner disk.
85 - Ori D. Fox 2014
The Type IIb supernova (SN) 1993J is one of only a few stripped-envelope supernovae with a progenitor star identified in pre-explosion images. SN IIb models typically invoke H envelope stripping by mass transfer in a binary system. For the case of SN 1993J, the models suggest that the companion grew to 22 M_solar and became a source of ultraviolet (UV) excess. Located in M81, at a distance of only 3.6 Mpc, SN 1993J offers one of the best opportunities to detect the putative companion and test the progenitor model. Previously published near-UV spectra in 2004 showed evidence for absorption lines consistent with a hot (B2 Ia) star, but the field was crowded and dominated by flux from the SN. Here we present Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS) and Wide-Field Camera 3 (WFC3) observations of SN 1993J from 2012, at which point the flux from the SN had faded sufficiently to potentially measure the UV continuum properties from the putative companion. The resulting UV spectrum is consistent with contributions from both a hot B star and the SN, although we cannot rule out line-of-sight coincidences.
88 - Laura Brenneman 2014
We have obtained a deep, simultaneous observation of the bright, nearby Seyfert galaxy IC 4329A with Suzaku and NuSTAR. Through a detailed spectral analysis, we are able to robustly separate the continuum, absorption and distant reflection components in the spectrum. The absorbing column is found to be modest at $N_H = 6 times 10^{21}$ cm$^2$, and does not introduce any significant curvature in the Fe K band. We are able to place a strong constraint on the presence of a broadened Fe K{alpha} line: $E = 6.46^{+0.08}_{-0.07}$ keV rest frame with ${sigma} = 0.33^{+0.08}_{-0.07}$ keV and $EW = 34^{+8}_{-7}$ eV, though we are not able to constrain any of the parameters of a relativistic reflection model. These results highlight the range in broad Fe K{alpha} line strengths observed in nearby, bright AGN (roughly an order of magnitude), and imply a corresponding range in the physical properties of the inner accretion disk in these sources. We have also updated our previously reported measurement of the high-energy cutoff of the hard X-ray emission using both observatories rather than just NuSTAR alone: $E_{cut} = 186 pm 14$ keV. This high-energy cutoff acts as a proxy for the temperature of the coronal electron plasma, enabling us to further separate this parameter from the optical depth of the plasma and to update our results for these parameters as well. We derive $kT = 50^{+6}_{-3}$ keV with ${tau} = 2.34^{+0.16}_{-0.11}$ using a spherical geometry, $kT = 61 pm 1$ keV with ${tau} = 0.68 pm 0.02$ for a slab geometry, with both having an equivalent goodness-of-fit.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا