ترغب بنشر مسار تعليمي؟ اضغط هنا

458 - Chao-Ling Hung 2013
Galaxy interactions/mergers have been shown to dominate the population of IR luminous galaxies (log(LIR)>11.6Lsun) in the local Universe (z<0.25). Recent studies based on the relation between galaxies star formation rates and stellar mass (the SFR-M relation or the galaxy main sequence (MS)) have suggested that galaxy interaction/mergers may only become significant when galaxies fall well above the galaxy MS. Since the typical SFR at given M increases with redshift, the existence of galaxy MS implies that massive, IR-luminous galaxies at high-z may not necessarily be driven by galaxy interactions. We examine the role of galaxy interactions in the SFR-M relation by carrying out a morphological analysis of 2084 Herschel-selected galaxies at 0.2 < z < 1.5 in the COSMOS field. Herschel-PACS and -SPIRE observations covering the full 2-deg^2 COSMOS field provide one of the largest far-IR selected samples of high-redshift galaxies with well-determined redshifts to date, with sufficient sensitivity at z ~ 1, to sample objects lying on and above the galaxy MS. Using a detailed visual classification scheme, we show that the fraction of disk galaxies decreases and the fraction of irregular galaxies increases systematically with increasing LIR out to z ~ 1.5 and z ~ 1.0, respectively. At log(LIR) > 11.5 Lsun, >50% of the objects show evident features of strongly interacting/merger systems, where this percentage is similar to the studies of local IR-luminous galaxies. The fraction of interacting/merger systems also systematically increases with the deviation from the SFR-M relation, supporting the view that galaxies fall above the MS are more dominated by mergers than the MS galaxies. Meanwhile, we find that ~18% of massive IR-luminous MS galaxies are classified as interacting systems, where this population may not evolve through the evolutionary track predicted by a simple gas exhaustion model.
We present deep 450um and 850um observations of a large, uniformly covered 394arcmin^2 area in the COSMOS field obtained with the SCUBA-2 instrument on the James Clerk Maxwell Telescope (JCMT). We achieve root-mean-square noise values of 4.13mJy at 4 50um and 0.80mJy at 850um. The differential and cumulative number counts are presented and compared to similar previous works. Individual point sources are identified at >3.6sigma significance, a threshold corresponding to a 3-5% sample contamination rate. We identify 78 sources at 450um and 99 at 850um, with flux densities S450=13-37mJy and S850=2-16mJy. Only 62-76% of 450um sources are 850um detected and 61-81% of 850um sources are 450um detected. The positional uncertainties at 450um are small (1-2.5) and therefore allow a precise identification of multiwavelength counterparts without reliance on detection at 24um or radio wavelengths; we find that only 44% of 450um-selected galaxies and 60% of 850um-sources have 24um or radio counterparts. 450um-selected galaxies peak at <z>=1.95+-0.19 and 850um=selected galaxies peak at <z>=2.16+-0.11. The two samples occupy similar parameter space in redshift and luminosity, while their median SED peak wavelengths differ by ~10-50um (translating to deltaTdust =8-12K, where 450um-selected galaxies are warmer). The similarities of the 450um and 850um populations, yet lack of direct overlap between them, suggests that submillimeter surveys conducted at any single far-infrared wavelength will be significantly incomplete (~>30%) at censusing infrared-luminous star formation at high-z.
We present high spatial resolution MERLIN 1.4GHz radio observations of two high redshift (z~2) sources, RGJ123623 (HDF147) and RGJ123617 (HDF130), selected as the brightest radio sources from a sample of submillimetre-faint radio galaxies. They have starburst classifications from their rest-frame UV spectra. However, their radio morphologies are remarkably compact (<80mas and <65mas respectively), demanding that the radio luminosity be dominated by Active Galactic Nuclei (AGN) rather than starbursts. Near-IR imaging (HST NICMOS F160W) shows large scale sizes (R_(1/2)~0.75, diameters ~12kpc) and SED fitting to photometric points (optical through the mid-IR) reveals massive (~5x10^(11) M_sun), old (a few Gyr) stellar populations. Both sources have low flux densities at observed 24um and are undetected in observed 70um and 850um, suggesting a low mass of interstellar dust. They are also formally undetected in the ultra-deep 2Ms Chandra data, suggesting that any AGN activity is likely intrinsically weak. We suggest both galaxies have evolved stellar populations, low star formation rates, and low accretion rates onto massive black holes (10^(8.6) M_sun) whose radio luminosity is weakly beamed (by factors of a few). A cluster-like environment has been identified near HDF130 by an over-density of galaxies at z=1.99, reinforcing the claim that clusters lead to more rapid evolution in galaxy populations. These observations suggest that high-resolution radio (MERLIN) can be a superb diagnostic tool of AGN in the diverse galaxy populations at z~2.
This is the first measurement and detection of coherence in the intergalactic medium (IGM) at substantially high redshift (z~3.8) and on large physical scales (~2.5 h^-1 Mpc). We perform the measurement by presenting new observations from Keck LRIS o f the high redshift quasar pair PC 1643+4631A, B and their Ly-alpha absorber coincidences. This experiment extends multiple sightline quasar absorber studies to higher redshift, higher opacity, larger transverse separation, and into a regime where coherence across the IGM becomes weak and difficult to detect. We fit 222 discrete Ly-alpha absorbers to sightline A and 211 to sightline B. Relative to a Monte Carlo pairing test (using symmetric, nearest neighbor matching) the data exhibit a 4sigma excess of pairs at low velocity splitting (<150 km/s), thus detecting coherence on transverse scales of ~2.5 h^-1 Mpc. We use spectra extracted from an SPH simulation to analyze symmetric pair matching, transmission distributions as a function of redshift and compute zero-lag cross-correlations to compare with the quasar pair data. The simulations agree with the data with the same strength (~4sigma) at similarly low velocity splitting above random chance pairings. In cross-correlation tests, the simulations agree when the mean flux (as a function of redshift) is assumed to follow the prescription given by Kirkman et al. (2005). While the detection of flux correlation (measured through coincident absorbers and cross-correlation amplitude) is only marginally significant, the agreement between data and simulations is encouraging for future work in which even better quality data will provide the best insight into the overarching structure of the IGM and its understanding as shown by SPH simulations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا