ترغب بنشر مسار تعليمي؟ اضغط هنا

We calculate the light meson spectrum and the light quark masses by lattice QCD simulation, treating all light quarks dynamically and employing the Iwasaki gluon action and the nonperturbatively O(a)-improved Wilson quark action. The calculations are made at the squared lattice spacings at an equal distance a^2~0.005, 0.01 and 0.015 fm^2, and the continuum limit is taken assuming an O(a^2) discretization error. The light meson spectrum is consistent with experiment. The up, down and strange quark masses in the bar{MS} scheme at 2 GeV are bar{m}=(m_{u}+m_{d})/2=3.55^{+0.65}_{-0.28} MeV and m_s=90.1^{+17.2}_{-6.1} MeV where the error includes statistical and all systematic errors added in quadrature. These values contain the previous estimates obtained with the dynamical u and d quarks within the error.
We present non-perturbative renormalization factors for $Delta S=2$ four-quark operators in quenched domain-wall QCD using the Schroedinger functional method. Non-perturbative renormalization factor for $B_K$ is evaluated at hadronic scale. Combined with the non-perturbative RG running obtained by the Alpha collaboration, our result yields renormalization factor which converts lattice bare $B_K$ to the renormalization group invariant one. We apply the renormalization factor to bare $B_K$ previously obtained by the CP-PACS collaboration with the quenched domain-wall QCD(DWQCD). We compare our result with previous ones obtained by perturbative renormalization factors, different renormalization schemes or different quark actions. We also show that chiral symmetry breaking effects in the renormalization factor are numerically small.
We present a lattice QCD calculation of the $rho$ meson decay width via the $P$-wave scattering phase shift for the I=1 two-pion system. Our calculation uses full QCD gauge configurations for $N_f=2$ flavors generated using a renormalization group im proved gauge action and an improved Wilson fermion action on a $12^3times24$ lattice at $m_pi/m_rho=0.41$ and the lattice spacing $1/a=0.92 {rm GeV}$. The phase shift calculated with the use of the finite size formula for the two-pion system in the moving frame shows a behavior consistent with the existence of a resonance at a mass close to the vector meson mass obtained in spectroscopy. The decay width estimated from the phase shift is consistent with the experiment, when the quark mass is scaled to the realistic value.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا