ترغب بنشر مسار تعليمي؟ اضغط هنا

We explore a disc origin for the highly-blueshifted, variable absorption lines seen in the X-ray spectrum of the Narrow Line Seyfert 1 galaxy IRAS13224-3809. The blueshift corresponds to a velocity of about 0.25c. Such features in other Active Galact ic Nuclei are often interpreted as UltraFast Outflows (UFOs). The velocity is of course present in the orbital motions of the inner disk. The absorption lines in IRAS13224-3809 are best seen when the flux is low and the reflection component of the disk is strong relative to the power-law continuum. The spectra are consistent with a model in which the reflection component passes through a thin, highly-ionized absorbing layer at the surface of the inner disc, the blue-shifted side of which dominates the flux due to relativistic aberration (the disc inclination is about 70 deg). No fast outflow need occur beyond the disc.
The Suzaku AGN Spin Survey is designed to determine the supermassive black hole spin in six nearby active galactic nuclei (AGN) via deep Suzaku stares, thereby giving us our first glimpse of the local black hole spin distribution. Here, we present an analysis of the first target to be studied under the auspices of this Key Project, the Seyfert galaxy NGC 3783. Despite complexity in the spectrum arising from a multi-component warm absorber, we detect and study relativistic reflection from the inner accretion disk. Assuming that the X-ray reflection is from the surface of a flat disk around a Kerr black hole, and that no X-ray reflection occurs within the general relativistic radius of marginal stability, we determine a lower limit on the black hole spin of a > 0.88 (99% confidence). We examine the robustness of this result to the assumption of the analysis, and present a brief discussion of spin-related selection biases that might affect flux-limited samples of AGN.
161 - L.W. Brenneman 2007
We present a detailed analysis of XMM-Newton EPIC-pn data for the Seyfert-1 galaxy NGC 4593. We discuss the X-ray spectral properties of this source as well as its variations with time. The 0.5-10 keV spectrum shows significant complexity beyond a si mple power-law form, with clear evidence existing for a soft excess as well as absorption by highly ionized plasma (a warm absorber) within the central engine of this active galactic nucleus. We show that the soft excess is best described as originating from thermal Comptonization by plasma that is appreciably cooler than the primary X-ray emitting plasma; we find that the form of the soft excess cannot be reproduced adequately by reflection from an ionized accretion disk. The only measurable deviation from the power-law continuum in the hard spectrum comes from the presence of cold and ionized fluorescent iron-K emission lines at 6.4 and 6.97 keV, respectively. While constraints on the ionized iron line are weak, the cold line is found to be narrow at CCD-resolution with a flux that does not track the temporal changes in the underlying continuum, implying an origin in the outer radii of the accretion disk or the putative molecular torus of Seyfert unification schemes. The X-ray continuum itself varies on all accessible time scales. We detect a ~230-second time-lag between soft and hard EPIC-pn bands that, if interpreted as scattering timescales within a Comptonizing disk corona, can be used to constrain the physical size of the primary X-ray source to a characteristic length scale of ~2 gravitational radii. Taken together, the small implied coronal size and the large implied iron line emitting region indicate a departure from the current picture of a typical AGN geometry.
163 - J.C. Lee 2002
The Chandra AO1 HETGS observation of the micro-quasar GRS 1915+105 in the low hard state reveals (1) neutral K absorption edges from Fe, Si, Mg, and S in cold gas, and (2) highly ionized (Fe XXV and Fe XXVI) absorption attributed to a hot disk, disk wind, or corona. The neutral edges reveal anomalous Si and Fe abundances which we attribute to surrounding cold material in/near the environment of GRS 1915+105. We also point out the exciting possibility for the first astrophysical detection of XAFS attributed to material in interstellar grains. We place constraints on the ionization parameter, temperature, and hydrogen equivalent number density of the absorber near the accretion disk based on the detection of the H- and He-like Fe absorption. Observed spectral changes in the ionized lines which track the light curve point to changes in both the ionizing flux and density of the absorber, supporting the presence of a flow. Details can be found in Lee et al., 2002, ApJ., 567, 1102
136 - J.C. Lee 2001
The time-averaged 30 ks Chandra HETGS observation of the micro-quasar GRS 1915+105 in the low hard state reveals for the first time in this source neutral K absorption edges from Fe, Si, Mg, & S. Ionized resonance absorption from H-, and He-like Fe ( XXV, XXVI), Ca XX and possibly emission from neutral Fe Kalpha and ionized Fe XXV (forbidden, or the resonance emission component of a P-Cygni profile) are also seen. We report the tentative detection of the first astrophysical signature of XAFS in the photoelectric edge of Si (and possibly Fe and Mg), attributed to material in grains. The large column densities measured from the neutral edges reveal anomalous Si and Fe abundances. Scenarios for which the anomalous abundances can be attributed to surrounding cold material associated with GRS 1915+105 and/or that the enrichment may signify either a highly unusual supernova/hypernova, or external supernova activity local to the binary are discussed. We attribute the ionized features to a hot disk, disk-wind, or corona environment. These features allow for constraints on the ionization parameter (log xi > 4.15), temperature (T > 2.4 x 10^6 K), and hydrogen equivalent number density (n > 10^{12} cm^{-3}) for this region. Variability studies with simultaneous RXTE data show that the light curve count rate tracks changes in the disk blackbody and the power-law flux. Spectral changes in the Chandra data also track the behavior of the light curve, and may point to changes in both the ionizing flux and density of the absorber. A 3.69 Hz QPO and weak first harmonic is seen in the RXTE data.
81 - C.S. Reynolds 1996
It is believed that most giant elliptical galaxies possess nuclear black holes with masses in excess of $10^8Msun$. Bondi accretion from the interstellar medium might then be expected to produce quasar-like luminosities from the nuclei of even quiesc ent elliptical galaxies. It is a puzzle that such luminosities are not observed. Motivated by this problem, Fabian & Rees have recently suggested that the final stages of accretion in these objects occurs in an advection-dominated mode with a correspondingly small radiative efficiency. Despite possessing a long-known active nucleus and dynamical evidence for a black hole, the low radiative and kinetic luminosities of the core of M87 provide the best illustration of this problem. We examine an advection-dominated model for the nucleus of M87 and show that accretion at the Bondi rate is compatible with the best known estimates for the core flux from radio through to X-ray wavelengths. The success of this model prompts us to propose that FR-I radio galaxies and quiescent elliptical galaxies accrete in an advection dominated mode whereas FR-II type radio-loud nuclei possess radiatively efficient thin accretion disks.
58 - C. Otani , T. Kii , C.S. Reynolds 1995
We present the results of a 4 day ASCA observation of the Seyfert galaxy MCG-6-30-15, focussing on the nature of the X-ray absorption by the warm absorber, characterizd by the K-edges of the intermediately ionized oxygen, OVII and OVIII. We confirm t hat the column density of OVIII changes on a timescale of $sim 10^4$~s when the X-ray continuum flux decreases. The significant anti-correlation of column density with continuum flux gives direct evidence that the warm absorber is photoionized by the X-ray continuum. From the timescale of the variation of the OVIII column density, we estimate that it originates from gas within a radius of about $10^{17}cm$ of the central engine. In contrast, the depth of the OVII edge shows no response to the continuum flux, which indicates that it originates in gas at larger radii. Our results strongly suggest that there are two warm absorbing regions; one located near or within the Broad Line Region, the other associated with the outer molecular torus, scattering medium or Narrow Line Region.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا