ترغب بنشر مسار تعليمي؟ اضغط هنا

Toy models for quantum evolution in the presence of closed timelike curves (CTCs) have gained attention in the recent literature due to the strange effects they predict. The circuits that give rise to these effects appear quite abstract and contrived , as they require non-trivial interactions between the future and past which lead to infinitely recursive equations. We consider the special case in which there is no interaction inside the CTC, referred to as an open timelike curve (OTC), for which the only local effect is to increase the time elapsed by a clock carried by the system. Remarkably, circuits with access to OTCs are shown to violate Heisenbergs uncertainty principle, allowing perfect state discrimination and perfect cloning of coherent states. The model is extended to wave-packets and smoothly recovers standard quantum mechanics in an appropriate physical limit. The analogy with general relativistic time-dilation suggests that OTCs provide a novel alternative to existing proposals for the behaviour of quantum systems under gravity.
59 - C.R. Myers , T.C. Ralph 2011
We present results illustrating the construction of 3D topological cluster states with coherent state logic. Such a construction would be ideally suited to wave-guide implementations of quantum optical processing. We investigate the use of a ballisti c CSign gate, showing that given large enough initial cat states, it is possible to build large 3D cluster states. We model X and Z basis measurements by displaced photon number detections and x-quadrature homodyne detections, respectively. We investigate whether teleportation can aid cluster state construction and whether the introduction of located loss errors fits within the topological cluster state framework.
We construct a qubit algebra from field creation and annihilation operators acting on a global vacuum state. Particles to be used as qubits are created from the vacuum by a near-deterministic single particle source. Our formulation makes the space-ti me dependence of the qubits explicit, preparing the way for quantum computation within a field framework. The method can be generalized to deal with interacting qubits whose wavepackets are not perfectly matched to each other. We give an example of how to calculate the Heisenberg evolution of a simple two-qubit circuit, taking expectation values in the field vacuum state.
72 - T.C. Ralph , C.R. Myers 2010
Recently, the quantum information processing power of closed timelike curves have been discussed. Because the most widely accepted model for quantum closed timelike curve interactions contains ambiguities, different authors have been able to reach ra dically different conclusions as to the power of such interactions. By tracing the information flow through such systems we are able to derive equivalent circuits with unique solutions, thus allowing an objective decision between the alternatives to be made. We conclude that closed timelike curves, if they exist and are well described by these simple models, would be a powerful resource for quantum information processing.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا