ترغب بنشر مسار تعليمي؟ اضغط هنا

We briefly summarize the impact of the recent Planck measurements for string inflationary models, and outline what might be expected to be learned in the near future from the expected improvement in sensitivity to the primordial tensor-to-scalar rati o. We comment on whether these models provide sufficient added value to compensate for their complexity, and ask how they fare in the face of the new constraints on non-gaussianity and dark radiation. We argue that as a group the predictions made before Planck agree well with what has been seen, and draw conclusions from this about what is likely to mean as sensitivity to primordial gravitational waves improves.
Inflationary scenarios in string theory often involve a large number of light scalar fields, whose presence can enrich the post-inflationary evolution of primordial fluctuations generated during the inflationary epoch. We provide a simple example of such post-inflationary processing within an explicit string-inflationary construction, using a Kahler modulus as the inflaton within the framework of LARGE Volume Type-IIB string flux compactifications. We argue that inflationary models within this broad category often have a selection of scalars that are light enough to be cosmologically relevant, whose contributions to the primordial fluctuation spectrum can compete with those generated in the standard way by the inflaton. These models consequently often predict nongaussianity at a level, f_NL ~ O(10), potentially observable by the Planck satellite, with a bi-spectrum maximized by triangles with squeezed shape in a string realisation of the curvaton scenario. We argue that the observation of such a signal would robustly prefer string cosmologies such as these that predict a multi-field dynamics during the very early universe.
We compute how threshold effects obtained by integrating out a heavy particle localized on a codimension-2 brane influence the properties of the brane and the bulk fields it sources in D=d+2 dimensions. We do so using a recently developed formalism f or matching the characteristics of higher codimension branes to the properties of the bulk fields they source. We show that although the dominant dependence on a heavy mass M that is induced in the low-energy codimension-2 tension has the generic size expected, T_2 propto M^d, the very-low-energy effective potential governing the on-brane curvature once bulk KK modes are integrated out can be additionally suppressed, by factors of order k^2 M^d, where k is the bulk gravitational coupling. In the special case of a codimension-2 brane in a 6D supersymmetric bulk we also estimate the size of the contributions of short-wavelength bulk loops near the brane, and find these can be similarly suppressed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا